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Corona Ion Deposition:  A Novel Non-Contact Method for Drug and 

Gene Delivery to Living Systems 

 
 

Niraj Ramachandran 
 
 

ABSTRACT 

 

Application of corona ions produced in air to B16F10 murine me-

lanoma cells in vitro and in animal models resulted in the transport of 

molecular therapeutics across the cell membrane.  This work presents 

the development of new methods for drug and gene delivery based 

upon similar principles as the traditional electrode driven membrane 

destabilization processes known as electroporation.  This was achieved 

with non-contact corona ion deposition that temporarily increased the 

permeability of cell membranes. 

Interaction of corona charge with biological cells was studied and 

their potential for molecular delivery was established.  Molecular deliv-

ery was first demonstrated in vitro using tracer molecules followed by 

in vitro delivery of the cytotoxic drug bleomycin.  Building upon these 

results, the delivery of bleomycin coincident with ion deposition was 



 

xxi 

shown to significantly slow the growth of very aggressive solid tumors 

in animal models, compared to drug alone or no treatment.  Delivery 

of plasmid DNA to cells in the skin of animal models indicated that ap-

plication of corona ions (both positive and negative) to live tissue pro-

duced a four to six fold increase in gene expression.  As this is the first 

significant study of the interaction and impact of corona ions on the 

delivery of drug and plasmid DNA to biological cells, numerous funda-

mental investigations were performed and discussed.  A charge dose 

dependence was observed and physical mechanistic models were pro-

posed.  A model of cell resealing time constant following corona ion 

exposure was developed and demonstrated a reasonable prediction of 

experimental findings. The foundation laid by this work may enable 

continued exploration and use of corona ion deposition in the future as 

a new and promising physical method for drug and gene delivery. 

 



 

1 

 
 
 
 
 

1  INTRODUCTION 

 

1.1  Drug and Gene Delivery 

Technological advancement in the areas of molecular biology and 

biotechnology have resulted in the development of numerous novel 

molecules that have potential for use as therapeutic agents.  One of 

the primary reasons for continuous research in the area of drug deliv-

ery has been the fact that many good drug candidates are rejected be-

cause they cannot be efficiently delivered in vivo.  A second reason is 

that as drug patents expire novel delivery methods provide a competi-

tive advantage in the market.  Both issues can be addressed by devel-

oping novel methods for delivering these therapeutics. 

The development of new drug delivery systems requires a proper 

understanding of drug formulation, bioavailability of the drug and op-

timization of the delivery vehicle.  A drug delivery engineer has to be 

aware of the main obstacles in these three areas.  Two basic areas of 

innovation that can potentially improve efficacy of a therapeutic agent 

are, a change in the drug formulation and changes in the system used 

to administer the drug.  Since delivering a therapeutic is the ultimate 
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goal of this research, discussion will be restricted to different systems 

and methods or routes used to administer therapeutic agents.  As of 

January 11, 2006, the FDA of the United States recognized 111 routes 

of drug administration [1].  Competition among drug companies is not 

only very intense for drug candidates where patents have been applied 

for a drug with the same molecular formula but different structural 

formula, but also among methods used to deliver them. 
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Figure 1.1: Worldwide market revenue from different 
drug delivery technologies [2]. 

 



 

3 

Figure 1.1 shows worldwide revenues from different drug 

delivery technologies currently used and projected growth until the 

year 2010 [2].  Revenues shown above include transdermal, 

transmuccosal, buccal, nasal, injectables, implantables and oral drug 

delivery technologies.  Data in the figure includes revenue earned not 

only from licensing a particular delivery technology but also revenue 

from pharmaceutical or biotechnology products that utilize that par-

ticular delivery technology.  Since molecular delivery technology is an 

integral part of a biotech or pharmaceutical company, worldwide reve-

nues shown above include revenues from the sales of a particular 

therapeutic molecule and delivery technology utilizing that molecule 

which by 2010 this will be a seven trillion dollar market. 

Traditional administration routes for therapeutics have been 

parenteral, enteral and topical.  Parenteral administration is carried 

out by injecting drugs into tissues; some examples of this route 

include intradermal, intramuscular, intravenous and subcutaneous 

injections.  Direct injection into tissues avoids degradation of drugs as 

in the gastrointestinal tract and allows for the rapid uptake.  Enteral 

therapeutics are administered orally or rectally to the digestive tract in 

the form of compressed tablets, capsules, or liquids.  Topical drugs are 

applied as creams, lotions, or solutions directly to the site where action 
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is required.  They avoid any effects to the surrounding tissues as they 

are applied only where they are needed. 

Targeted delivery of drugs has been another strategy that has 

been the subject of many investigations in the past decade.  Most 

strategies utilize the traditional administration routes outlined above 

combined with a chemical or biological component to target or localize 

delivery and also to reduce systemic toxicity.  Targeted drug delivery 

can be active or passive.  An example of active targeted delivery is the 

case of an antibody-drug conjugate for the chemotherapeutic 

treatment of cancerous cells [3].  Passive targeted delivery for 

example uses liposomes [4], polymeric micelles [5], lipid nanoparticles 

[6] etc. that encapsulate drug molecules and can accumulate in 

specific types of tissues.  Despite the efficacy of all active or passive 

strategies, no targeting strategy has provided universal improvement.  

This is particularly true for the treatment of cancer.  Novel anti-cancer 

drug candidates do not find their way to the site of action and 

concentrations at the tumor sites are very low to effect any action.  

This can be attributed to high interstitial pressure and uneven 

distribution of blood vessels in the tumors [7, 8].  

Alternative methods of drug delivery focus on targeting specific 

drug and/or drug carriers with physical methods.  The use of physical 

methods such as an energy source for delivering drugs either 
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systemically or locally is gaining prominence as it avoids complications 

with chemicals or biologicals that can arise due to systemic toxicity.  

The use of ultrasound [9], magnetic fields [10] and electric fields [11], 

as forcing functions, are a few examples of physical methods that have 

been developed and used for delivery of therapeutics with some 

degree of success.   

The importance of research into new delivery methods for drugs 

has been highlighted above.  DNA or genes are another class of mole-

cules that have potential to be used as therapeutic agents.  A gene is a 

physical and functional unit of hereditary, which carries information 

from one generation to the next.  Gene delivery or gene therapy (still 

not approved as a therapy in humans) is another promising method to 

treat many diseases.  Gene therapy is the insertion of a normal copy 

of a gene into a cell or tissue that has a defective gene to treat a dis-

ease or disorder.  It is also used in cases when the normal functional 

gene is completely absent.   

With gene therapy, it is possible to transform both somatic and 

germ line cells.  Transforming germ line cells in humans remains very 

controversial; hence, most of the transformation work has been di-

rected to somatic cells.  Gene therapies can be categorized in two 

ways: ex-vivo – cells are removed from the body, modified and then 

transplanted back and in vivo – where genes are delivered to cells in-
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side the body.  In the ex-vivo technique cells are removed from the 

body and viral vectors are used to insert the therapeutic gene into 

them.  The cells are then transplanted back into the body where they 

express the desired protein.  This technique is most frequently used 

when the desired cells can be easily extracted from the body as in the 

case with blood cells [12, 13].  An example of this was the use of pe-

ripheral blood lymphocytes from two patients to transfer ex-vivo, the 

human ADA gene, into bone marrow cells and to undergo exogenous 

enzyme replacement therapy [13].  The in vivo technique was devel-

oped later and is more challenging as the genetic material has to be 

delivered to the cells while they are in the body.  A typical example of 

this is the low efficiency of gene transfer in vivo in clinical trials for 

cystic fibrosis [14].  The current transfection efficiencies are probably 

too low to result in clinical benefit.  The host innate and acquired im-

munity, in addition to intra and extracellular barriers are responsible 

for this low efficiency [14].  

Biological methods were amongst the first used for gene delivery 

and viruses were the vehicles used as they attack host cells and de-

liver their genetic material into them.  Viruses were prepared for gene 

delivery by modifying them to include a gene encoding a therapeutic 

molecule of interest.  Retroviruses, adenoviruses and adeno-associated 

viruses are probably the most commonly used viruses for gene 
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delivery.  Although viral methods generally transfer genetic material 

efficiently, there are drawbacks to their use.  They are relatively 

complex to prepare, have restrictions on the size of their DNA payload 

and some can evoke immune responses that can seriously threaten a 

patient’s health.   

Drawbacks of viral methods have led to the development of al-

ternative gene delivery methods that utilize physical forces to deliver 

DNA to target cells.  These physical methods assist in the transfection 

of plasmid DNA.  This type of construct is a circular double stranded 

DNA molecule that codes for a therapeutic agent of interest.  Plasmids 

are relatively simple to prepare and do not evoke immune responses.  

This is an advantage relative to viruses.  Some of the most common 

physical, or non-viral, methods for gene delivery include the use of ul-

trasonic irradiation [9], magnetic fields [10], pressure differentials 

[15] and electric fields [11].   

Ultrasonic irradiation uses kilo and megahertz frequency sound 

waves to enhance the permeation of molecules to cells.  Acoustic cavi-

tation is thought to be the mechanism by which the plasma mem-

branes of cells are reversibly disrupted to allow the passage of plasmid 

into the cells.  The use of magnetic fields involves tagging DNA with 

iron oxide, which is biodegradable and an external magnetic field is 

used to drive the assembly inside the cell.  This is probably a drawback 



 

8 

of using magnetic fields as it has to be tagged to a magnetic material.  

Pressure differential created by hydrostatic pressure is used to force 

the uptake of plasmid DNA by systemic injection of a large volume of 

DNA. 

Exposing biological cells to electric fields for the molecular 

delivery of drugs and DNA is commonly known as electroporation or 

electropermeabilization.  This type of delivery uses electric fields to 

affect cell membranes in a manner that temporarily increases their 

permeability to molecules that normally do not have access to the 

cytosol. This delivery method is the topic of much research and has 

been documented through many successes in animal models [16, 17].  

Gene transfer using electroporation was first demonstrated by 

Neumann et al in mouse lyoma cells in vitro more than two decades 

ago [18].  Following this, the in vivo use of electroporation was first 

demonstrated by delivering the drug bleomycin to solid tumors [19, 

20].  Gene transfer using electric fields first started in the early 90s 

[21] and has been used successfully for delivering drugs and DNA to 

many tissues since.  Gene delivery has been reported in skin [22,23], 

muscle [24,25], liver [26,27] and solid tumors [28,29].   

Electroporation has been noted as having the highest efficiency 

[30, 31] amongst the physical methods.  Despite the success achieved 

by electroporation as a physical method for drug and gene delivery 
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there remain some drawbacks.  The first and foremost issue with 

electroporation is the use of electrodes that directly penetrate/contact 

the tumors or target tissue.  This results in the administration of high 

power and current to the patient.  In animal studies and clinical trials 

focused on treating tumors and other tissues, this has shown the po-

tential to result in muscle contraction, pain, or tissue damage [32, 33].  

In addition treating large volumes of tissue can also be a problem.  

Hence one goal of this research was to develop a treatment system 

that is non-invasive and does not produce any discomfort and tissue 

damage.   

Corona ions have the potential to be applied to living systems in 

a manner similar to the electric fields used during electroporation while 

avoiding problems associated with electrode stimulated delivery.  

Corona discharge, a kind of plasma generated in air, is one such 

physical method that can avoid contact with the target tissue.  These 

ions can be applied using a low current to potentially avoid 

complications related to tissue damage due to high power that is 

typically used in electroporation.  Therefore, coronal ions were 

investigated in this study as a novel non-contact means for the 

delivery of drugs and genes.  Detailed definitions of corona ions and 

how they are generated are described in the sections that follow.   
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1.2  Review of Plasma Applications in Biomedical Engineering  

Plasma is the state of matter that was first identified by Sir 

William Crookes in 1879 and is a gas in its ionized state.  This 

energetic gas phase state results when electrons in the outer shell 

have been stripped from the atom resulting in a collection of ions and 

electrons separated from each other.  Plasma is a unique and distinct 

state of matter and its unique properties are due to the presence of 

electrons and ions which act as free charge carriers.  These free 

charges make the plasma conductive and when acted upon by an 

external electric field will be accelerated to constitute a current.  

Plasmas can be generated by heating, using laser beams, ultra 

violet radiation, electric fields etc.  Irrespective of their generation 

mechanism, plasmas can be categorized as thermal or nonthermal 

based on the relative temperatures of the ions, electrons and the 

neutrals.  Ionized gases consist of ions, electrons and uncharged 

particles such as atoms, molecules and radicals.  Atoms, molecules 

and radicals (atoms with unpaired electrons) are collectively known as 

neutrals.  Temperature of plasma is the thermal energy per charged 

particle and it is measured in electron volts or Kelvins [34].  Once 

ionization of a gas takes place it is the difference in temperature of the 

electrons and ions that determines if a plasma is hot or cold.   
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A common method of generating plasmas used in biological 

applications is by an electrical discharge or ionization of the 

surrounding medium.  Application of high voltage to a conductor can 

lead to the ionization of a surrounding medium due to the high value 

of the electric field around it.  Ions and electrons generated in the 

process drift under the influence of the electric field and can be used 

to affect a target at a distance.  Corona discharge is a specific sub-

type of plasma generated by the ionization of air molecules at 

atmospheric pressure.  Plasmas generated by an electrical discharge 

can be categorized into the following different types [34]. 

x Direct current discharges 

x Pulsed DC discharges 

x Radio Frequency (RF) discharges 

o Inductively coupled 

o Capacitively coupled 

x Microwave discharges 

Most electrically generated plasmas used in biomedical app-

lications are generated by RF discharges.  More information about 

plasmas generated by RF discharges can be obtained in work done by 

Kieft et al [35].  Since most plasmas used in biomedical engineering 
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are non-thermal; discussion will be restricted to non-thermal plasmas.  

In non-thermal plasmas the ions and neutrals are at a much lower 

temperature than the electrons.  The electrons can come back to 

thermodynamic equilibrium much faster with each other than they do 

with ions and neutrals due to difference in their masses.  Hence the 

ion temperature, which is the most important parameter in biomedical 

applications, is far lower than the electron temperature [36].  

Ionization of a gas is necessary for plasma to exist and the extent to 

which a gas is ionized (degree of ionization) which is the number of 

atoms or molecules that have gained or lost an electron is directly 

proportional to the temperature.  For example a plasma is considered 

hot if it is fully ionized and cold if only a very small fraction of the gas 

is ionized.    

Non-thermal plasmas have been used in surface processing [37, 

38], bacterial decontamination of medical equipment and air [39, 40].  

One of the main uses of plasma in biomedicine is the coating of 

implants with biocompatible layers [41] and the surface modification of 

substrates for cell culture [42].  Discharge plasmas have also been 

used in chemical micro patterning of cell culture substrates to induce 

cellular attachment [43].  More recently, corona discharge, a kind of 

plasma, has been investigated for its possible use in sterilizing wine 

[44] and heat sensitive materials [45]. Corona ion exposure has also 
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been investigated for eliminating dust mites and allergens [46] and for 

the modification of polymers used in biomedical applications [47, 48].   

Plasmas generated using radio frequency excitation in inert 

gases have been used for manipulating mammalian cells [49-51].  The 

primary goal of these studies with RF plasmas was to develop a pain 

free system to treat skin diseases, for electrosurgery and the cleansing 

of dental cavities.  Increases in cell detachment, apoptosis and 

bacterial inactivation were some of the effects observed.  These RF 

plasmas were not generated in stationary gases but were assisted by a 

flowing gas which also served as a kinetic energy source to the ions.   

Of the plasma applications in biomedical engineering discussed 

above, none have focused on drug and gene delivery.  There are only 

few applications investigating the use of plasmas for the purposes of 

drug and gene delivery.  A discharge plasma has been developed for in 

vitro gene transfection of primary neuronal cells from cerebral cortices 

of rats [52].  The atmospheric pressure plasma used by Ogawa and 

colleagues for this study was originally used for surface treatment of 

non-biological materials.  The study only made visual observation of 

samples transfected with the GFP gene after 24 hours of treatment.  

Fluorescent micrographs of cells transfected with GFP appeared to 

show an increase in fluorescence as compared to controls, but no 

quantitative gene expression data was presented.  More recently 
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Palankar and colleagues used a discharge plasma to transfect genes 

into the retina of rabbits in vivo.  A 100µm electrode was used to 

produce the electric discharge.  An electrical probe was developed with 

the microelectrode on it so it could be inserted behind the sclera in the 

rabbit eye.  Application of a high voltage to the microelectrode led to 

the rapid vaporization of the surrounding conductive media.  The 

resulting mechanical stress and electric current generated by the 

plasma were concluded as being responsible for the transfection of the 

gene to the retinal epithelium [53].  Higher gene expression was 

demonstrated over established physical methods like electroporation 

and ultrasound using this plasma source in the retina.   

Yamada et al [54] have used water generated negative air ions 

to inhibit carcinogenesis in mice and also to activate natural killer cells 

of the immune system.  Water generated negative ions were created 

by ionizing water using the Lenard effect [55].  The Lenard effect first 

studied by the German physicist P. Lenard is the separation of electric 

charges accompanying the aerodynamic breakup of water drops 

generated by passing steam.  This study demonstrated delivery of the 

drug methylcolanthrene to established tumors in mice.  Even though 

complete destruction of tumors was not achieved, the rate of tumor 

growth was slowed down for three weeks [54]. 
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Low energy ion induced gene transfer into biological cells is 

another novel method that has been investigated in the recent past 

[56].  These ions commonly referred to as low energy ions are 

generated by an ion source and are accelerated under the influence of 

an electrostatic field to gain a certain amount of energy.  The process 

of ion generation is very similar to that used in etching or surface 

sputtering and is carried out in a vacuum at reduced pressures of 

around 10-4 Pa.  Cells were exposed to these low energy ions (10-15 

keV) to induce gene transfer.  Gene expression was only demonstrated 

though microscopic observations and not quantified.  One study was 

designed to examine the effects of low energy (30 keV) electric fields 

[57] on cells for possible application in breeding.  Plasmids carrying 

the GUS, hyp (hygromycin phosphotransferase) and chitinase genes 

were successfully delivered using this ion beam source.  Mature 

embryos of rice, wheat and tobacco were successfully transected to 

create a new generation of transgenic plants. 

1.3  Corona Ion Basics 

As mentioned above, corona discharge is a type of plasma 

generated in air at atmospheric pressure and temperature.  Since most 

biomedical applications of plasmas employ an electrical source for 

driving ionization, the process of generating charged particles with 
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electric fields in air will be described first.  Air like most gases at 

atmospheric pressure and temperature is a good insulator.  If heated 

to high temperatures or exposed to ultraviolet radiation, ionization of 

air occurs and charged particles are produced.  If an external electric 

field is applied, these charges will be accelerated and can constitute a 

current.  As the magnitude of electric field increases a self sustained 

discharge results.  An increase in the electric field beyond a certain 

threshold can then result in electrical breakdown of air.  The electrical 

breakdown/ionization process also depends on factors like temp-

erature, relative humidity and pressure.  

A corona discharge is the phenomenon of creating charged 

particles by ionizing air using a high electric field at atmospheric 

temperature and pressure.  It is generally a silent electric discharge 

that occurs from very sharp or pointed objects when the electric field 

attains a very high value at these sharp edges.  Corona discharge can 

also become an audible discharge, depending on the conditions of the 

discharge electrode; temperature, humidity and accumulation of dirt or 

dust.  Application of a very high value of electric field close to 

breakdown voltage can also lead to an audible discharge.  Two 

electrodes are typically used to produce a coronal discharge.  One 

electrode is highly curved with a very small diameter wire or the tip of 

a pointed electrode through which high voltage is passed and the other 
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electrode is flat or blunt.  The flat or blunt electrode is normally 

grounded to prevent arcing to the substrate.  A point to be noted is 

that a corona discharge can also occur with only one curved or pointed 

electrode and the grounded electrode is not always needed. 

 

Figure 1.2: Typical voltage-current curve for a DC co-
rona discharge [58]. 

 

Figure 1.2 shows a typical voltage-current curve for a DC corona 

discharge showing the corona onset voltage, which is the voltage at 

which current is first detected from a particular discharge electrode at 

a particular distance from it.  The corona onset region is followed by 

the stable corona region.  In this region of the curve, the amount of 

current produced is related to the voltage applied to the discharge 
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electrode.  The spark over point is the voltage at which complete 

breakdown of air takes place.  The stable corona region is where most 

corona generating devices are operated as there is predictable 

behavior.  Corona discharges can be detected in numerous ways.  The 

easiest method is by a weak bluish or violet glow of visible light that is 

produced near the discharge electrode.  It can also be detected by 

using charge collecting and measuring devices.  When a corona 

discharge first starts it appears as a weak and faint glow.  As the 

voltage is increased the glow eventually spreads into streamers [59].  

Streamers look like rays of light that propagate out from the discharge 

electrode like a spray.  This happens only with particular electrode 

geometries and at specific applied voltages [59] 

To explain the phenomenon of corona ion generation first a 

distinction must be established between ionization and complete 

breakdown or arcing.  An electrical breakdown is the complete 

ionization of air between two electrodes.  Electrical breakdown is often 

assumed to be associated only with high voltages, but contrary to this 

belief it is also possible to have a breakdown at very low voltages.  

The key for electrical breakdown is the electric field strength.  This 

situation can be explained when a comparison is made between the 

breakdown field strength and the breakdown voltage.  Consider air 

sandwiched in between two parallel flat plate electrodes as shown in 
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Figure 1.3.  It is known that atmospheric air has a few naturally 

occurring ions and free electrons which constantly undergo random 

thermal collisions with other molecules.  The energy of these particles 

is too low for them to cause ionization (i.e. stripping out an electron 

from an air molecule).  Now if a voltage is applied to the flat plate 

electrode present in air, these charged particles gain energy from the 

field and will be accelerated.  If a particle having a charge Q is 

accelerated by the electric field of strength E through a distance of Ʃz, 

then its kinetic energy increase ( KE' ) would equal 

 

                            

  

 

 

Figure 1.3: Homogenous electric field established be-
tween two parallel flat plates.    
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For an electron with charge e the increase in kinetic energy is 

given by equation (1.2).  This expression is valid only if the particle 

does not collide with any other particle over this distance z'  (in 

vacuum).  An electron and negative ion have the same elementary 

charge e  but they will move different distances even after gaining the 

same amount of energy due to difference in their masses.  The total 

mean distance that an electron or an ion travels between collisions is 

known as their mean free path.  Hence the maximum total energy 

expressions for an electron and ion are given by 

(1.3)    ee zEeE uu '  

(1.4)    ii zEeE uu '  

Where ez  and iz  are mean free paths for electron and ion 

respectively, iE'  and eE'  are total energy expressions for ion and 

electron given by equations (1.3) and (1.4) respectively and E is the 

applied electric field.  Now the mean free path traversed by an ion will 

be much smaller than an electron due to the difference in size. The 

mean free path of an electron is § 10-5 m and that for an ion is §10-7 

m [60], hence an electron would reach its maximum total energy eE' at 

the breakdown field strength of air which is about 100 fold lower based 

on the mean free paths.  If it takes energy iE'  to strip an electron 

from an air molecule to ionize it into an electron and ion pair, it is 
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known from the literature that iE' § 5 ×10-18 J or 30 eV [60].  For 

atmospheric air we can substitute this value in equation (1.4) and 

obtain the value for the breakdown field strength for air. 

(1.5)    ibreakdowni zeEE uu '  
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These calculations are valid only for the situation where the 

value of the electric field is homogenous like that established between 

two parallel flat plate electrodes as shown in Figure 1.3.  The field 

strength in the space between the two plates is given by dVE  .  V  is 

the applied voltage difference and d is the distance between the 

plates.  If we substitute the value of E  as mMV125.3  and the distance 

d  as 1 cm we obtain a value of 31,250 V .  This voltage is the 

breakdown value or the voltage that would have to be applied in order 

to have complete breakdown or spark in the situation shown in Figure 

1.3. 

Now consider a needle with a very sharp tip as shown in Figure 

1.4.  If a voltage is applied to the needle, the electric field around the 
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needle tip will be inhomogeneous.  This situation is different and more 

complicated as compared to the parallel flat plate situation shown in 

Figure 1.3.  This difference in geometry results in a higher breakdown 

field strength and subsequently a lower breakdown voltage at the tip 

of the needle.  The reason for this is due to the decreasing value of the 

electric field as the distance from the electrode is increased.  The 

electric field will be the highest at the tip of the electrode and this is 

where ionization or discharge begins. 

 
Figure 1.4: Inhomogeneous electric field established 

between a sharp pointed electrode and a 
flat plate electrode.  

 

If a voltage is applied to the electrodes shown in Figure 1.3 and 

1.4 until a current on the charge collecting plate is first detected, the 

voltage applied to the needle electrode will be much lower.  In case of 

a parallel plate the breakdown field strength is exceeded at all points 

Grounded charge collecting 
plate 

D = 1cm E – Inhomogeneous electric 



 

23 

and the discharge may start at any point the first free electron is 

available.  Complete ionization will take place along this path 

connecting the two electrodes resulting in a spark.  In case of the 

needle electrode the breakdown field strength is exceeded only in the 

small volume at the tip of the electrode resulting in the generation of 

ions.  If the polarity of the applied voltage is positive, positive ions will 

drift [61] under the influence of the electric field and the negative ions 

and electrons will move towards the discharge electrode where they 

will be neutralized.  This process is called a corona discharge and the 

ions that drift out are called corona ions.   

Corona ions can be generated in air by applying a potential of 

approximately ± 3-7 kV to a pointed electrode or small radius wire.  

The majority of charged ionic species obtained are +H (H2O)n when the 

applied polarity is positive and ¯CO3 when the applied polarity is nega-

tive [62].  This is the conventional method of representing these ions, 

merely by a positive or negative sign on the left hand superscript indi-

cating if the ion is positive or negative.  The ions represented here are 

the classical small ions of atmospheric electricity that have around 10 

to 15 polarizable water molecules attached to ions generated by ioni-

zation of air molecules.  These generated ions undergo many collisions 

per second (on the order of a million) with other air molecules at at-

mospheric pressure and therefore quickly lose any excess energy that 
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they might have gained from the ionization process.  The corona ions 

produced at the source electrode move under the influence of the elec-

tric field surrounding the same electrode and can be deposited onto a 

substrate below [61].  These ions can be directed through air to target 

cells in vitro and in vivo.  Thus, corona ions may be applied to target 

cells/tissue without direct contact with an electrical source.  Although 

there has been a significant amount of research performed on the 

interaction of high energy electric fields like those used in 

electroporation with biological cells no studies have been performed to 

evaluate possible effects of corona ions to biological cells for the 

purpose of molecular delivery.  The successful use of corona ions for 

drug and gene delivery would address a number of issues associated 

with direct contact electroporation.  These issues include the place-

ment of electrodes into the target tissues, high voltage applied directly 

to the tissue and patient discomfort. 
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2  HYPOTHESIS AND SPECIFIC AIMS 

 

2.1  Hypothesis 

It is clear from the relevant literature that novel methods for de-

livering both drugs and genes are a significant part of biomedical re-

search.  It is also evident from the literature that delivery technologies 

that allow therapeutic agents access to the cytosol can result in im-

proved therapies for many diseases.  Therefore, there is a need for in-

vestigations into discovering novel methods for drug and gene deliv-

ery.   

In recent history research into novel delivery methods has been 

focused on exploiting chemicals, biologicals, or physical forces.  One 

successfully used physical force for molecular delivery is electric fields.  

The use of electric fields to deliver drugs and DNA is a well researched 

and established physical delivery method.  It is accepted that properly 

applied electric fields create temporary pores or defects in cell 

membranes that allow the passage of impermeant molecules to the 

cytosol [18-29, 63-67].  This method known as electroporation or 

electropermeabilization has many documented successes in animal 
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models and in the clinic [68-72].  However, this method is not without 

drawbacks.  Tissue damage has been a problem in animal studies and 

clinical trials focused on treating tumors and other tissues. In addition, 

electroporation has resulted in muscle contraction and pain.  The rea-

sons for this are that high voltages are used which result in corre-

spondingly high currents [73, 74].  Also, electrode used for electropo-

ration must be in contact with (or penetrate) the target tissue. 

Thus, this research was designed to investigate corona ions as 

an electrical method for delivering therapeutic agents.  Corona charge 

was selected for investigation because application does not require the 

direct contact between tissue and electrodes used to generate the ions  

and the associated current is also very low.  Based on the needs and 

rationale presented above, this study was designed to test the follow-

ing hypothesis: corona ions can be applied to living systems to deliver 

drugs and DNA in cell culture and in tissues. 

2.2  Specific Aims 

The aims of the study were established to systematically investi-

gate the hypothesis. They were also designed to move from creating a 

novel corona generating system, to in vitro work, to tissue applica-

tions.  The specific aims of this study are presented below.  
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2.2.1  Specific Aim 1: To Design, Construct and Characterize a Corona 
Generating System Suitable for Application in Living Systems 

A corona ion generator was designed that produced more charge 

than those that were commercially available in order to facilitate ex-

perimental work.  This design was characterized using a collection of 

instruments that were used to control corona charge generation. 

2.2.2  Specific Aim 2: To Test the Capability of Corona Ions for Deliv-
ering Dyes and Tracer Molecules In Vitro  

This aim was designed to perform basic in vitro testing of the co-

rona ion generating device developed in Specific Aim 1.  Molecular de-

livery was tested using calcein and SYTOX-green nucleic acid probe in 

a murine melanoma cell line.  Short term viability of the cells exposed 

to positive and negative corona ions was also investigated.   

2.2.3  Specific Aim 3: To Investigate the Use of Corona Ions for Deliv-
ering Bleomycin In Vitro and to Established Tumors in an Ani-
mal Model 

This aim was designed to determine if corona ions could be used 

to deliver a cytotoxic drug to murine B16F10 tumor cells.  Bleomycin 

was delivered to the cell line in vitro.  Experimental work then focused 

on delivering bleomycin to established solid tumors using the same cell 

line in the flanks of a murine model.   
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2.2.4  Specific Aim 4: To Evaluate the Use of Corona Ions for Deliver-
ing Plasmid DNA to Cells in the Skin of a Murine Model 

Experiments for this aim incorporated plasmid DNA and murine 

skin as a model. The reporter gene luciferase was delivered using co-

rona charge to demonstrate the utility of this method for obtaining the 

expression of foreign DNA.   

2.2.5 Specific Aim 5: To Investigate the Mechanism of Interaction of 
Corona Ions with Biological Cells 

The mechanism of interaction of corona ions with biological cells 

was investigated.  Experiments were carried out to elucidate a possible 

mechanism of the uptake of extracellular molecules that do not nor-

mally permeate the cell membrane.  Uptake rates for a fluorescent 

tracer molecule were also determined. 
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3  MATERIALS AND METHODS 

 

This section describes in detail all the materials and methods 

used to carry out experiments mentioned in the five specific aims of 

the study.  The materials and corresponding methods used are catego-

rized according to each specific aim.  The overarching theme of this 

work was to demonstrate the first implementation of non-contact de-

livery of impermeant molecules to the cytosol of cells in vitro and in 

vivo.  To accomplish this, a new ionic charge delivery apparatus was 

constructed and characterized, statistical methods were applied to ex-

plore the parameter space of the delivery methods and new protocols 

were developed for experiments that explored the application space of 

ion driven delivery to tissues. 

3.1  Specific Aim 1: To Design, Construct and Characterize a Corona 
Generating System Suitable for Application in Living Systems 

3.1.1  Corona Discharge Apparatus  

Corona ions were produced using two different ion generators.  

The first ion generator was a commercially available product that con-

sisted of two 150Pm diameter platinum coated stainless steel wires to 
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which high voltage was applied.  This ion generator, diagrammatically 

shown in Figure 3.1, included a rectangular ground plate on either side 

of the wires.  The distance between the wires and the ground plates 

was 6 mm.  To generate ions, the platinum coated wires were main-

tained at either a positive or negative potential with respect to the 

grounded steel bars on either side of the wires as shown in Figure 3.1.  

This generator (Semiconductor Diagnostic, Inc.; Tampa, FL) was origi-

nally designed to charge semiconductor substrates for electronic mate-

rials characterization. 

The second corona generator, designed and implemented as part 

of this work, was an array of nine 28 gauge stainless steel acupuncture 

needles (NA2840, Suzhou Gusu Acupuncture & Moxitustion Appliance 

Co. Ltd.).  The needles were fixed within a circular Teflon rod, ma-

chined to 26 mm high by 38 mm outside diameter as shown in Figure 

3.2 a) and b).   

 

 
 
 
 
 
Figure 3.1: Schematic of the two wire corona genera-

tor.   
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The circular array was formed in this generator by inserting the 

needles through holes, drilled in the Teflon rod, such that the tapered 

tips protruded below the lower polymer surface.  One needle was lo-

cated at the center and the remaining eight needles were equally 

spaced around an 11 mm diameter circle.  The needles were con-

nected together at the top to facilitate connection to a high voltage 

power supply.  An annular stainless steel plate, Figure 3.2 b), was af-

fixed to the bottom of the Teflon rod and was connected to the ground 

of the power supply to prevent arcing from the high potential needles 

to either the media solution for in vitro work or to tissue for in vivo ex-

periments.  The inside diameter of the ground plate was 28 mm.  The 

needle tips were located in the plane of the top of the ground plate.  

Figure 3.2 c) and d) show close up the needles used for corona ion 

generation.  The entire corona ion generating apparatus was mounted 

on a micromanipulator so that it could be positioned 7 mm from cul-

tured cells. 
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Figure 3.2: a) Side view and b) bottom view of the nine 

needle corona generator c) and d) magnified 
views of the needle tips 25X and 400X, respec-
tively.  The tip radius was approximately 2µm. 

 

High voltage was provided to the corona generators used in this 

work by a programmable DC power supply (CZE 2000, Spellman High 

Voltage Electronics, Hauppauge, NY).  A data acquisition card (DAQ) 

and LabView program (PCI 6036 E and LabView 8, National Instru-

ments, Austin, TX) controlled the high voltage output from the power 

supply to facilitate the associated corona ion generation.  The software 

allowed the user to control the applied voltage and time a particular 

sample was exposed to corona ions for.  The virtual interface of the 

LabView program is shown in Figure 3.3 and the source code of each 

of its components are shown in Figures 3.4, 3.5 and 3.6.   
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Figure 3.3: Virtual Interface of the LabView program version 
8.0.  a) part of the virtual interface where user in-
puts voltage and time for corona ion exposure b) 
corona current monitor c) temperature and humid-
ity monitor. 
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Figure 3.4: Source code of part a) of the Virtual Interface 
in Figure 3.3. 

 

Figure 3.4 shows the code of the part of the virtual interface 

where the user inputs values for voltage and time of corona ion expo-

sure.  Once these variables have been input, a signal is sent to the 

programmable power supply with these parameters.  The virtual inter-

face communicates to the DAQ through a unique device ID and chan-

nel numbers.  Figure 3.5 shows the source code for the corona current 

monitor.  Current generated throughout the process was recorded and 

written to a text file.  Figure 3.6 displays the source for monitoring the 

temperature and humidity during the experiment.  Actual temperature 

and humidity values are also displayed in the main virtual interface.  
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This enabled monitoring the effect of temperature and humidity on the 

corona current. 

 

Figure 3.5: Source code for current monitor part 
b) in Figure 3.3. 

 

.  

Figure 3.6: Source code for temperature and humidity 
monitor part c) in Figure 3.3. 
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The complete instrument system is shown in Figure 3.7 including 

the programmable power supply and the connector block that commu-

nicated between the DAQ card and the programmable power supply 

through a unique ID and channel numbers.  The figure also shows the 

nine needle corona ion generator mounted on a micromanipulator so 

that the ions source may be positioned accurately relative to samples 

being treated. 

 

Figure 3.7: New corona ion generating system with programmable 
power supply and new nine needle generator.  a) Pro-
grammable power supply b) 24 volts DC power supply 
for programmable power supply c) 68-pin connector 
block d) switch to reverse polarity of voltage applied to 
corona generator e) micromanipulator and f) corona 
generator. 
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3.1.2  Corona Discharge Characterization 

To ensure that consistent ion density was provided by any co-

rona system, ionic current from the two wire or nine needle corona ion 

generators was determined prior to each experiment using an elec-

trometer (Keithley 6517A, Keithley Instruments Inc. Cleveland OH) 

and a stainless steel charge collecting plate located 7 mm below the 

bottom of the generator.  A photograph of the electrometer with the 

charge collecting plate is shown in Figure 3.8.  One end of the input 

cable from the electrometer terminated to a protection circuit.  The 

other end of the cable had two alligator clips as shown in the Figure 

3.8.  The input high of the electrometer was connected to the metal 

collecting plate while the input low was connected to the ground.   
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Figure 3.8: Charge collecting plate, attached to a block of 
CPVC, used to characterize corona ion genera-
tors.  a) electrometer b) male triax connector 
c) charge collecting plate. 

 

Charge deposited on the plate by the respective generators was 

determined for a particular applied voltage and polarity used.  Typical 

current values for the two wire corona device were 3 µA when +6 kV 

was applied to the corona generating wires.  The nine needle device 

produced +30 µA at an applied potential of +6 kV and -85 µA for -6 

kV.  Note that for a given potential, a higher negative current was al-

ways observed relative to positive ion current, independent of the type 

of the corona generator used. 
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3.2  Specific Aim 2: To Test the Capability of Corona Ions for Deliver-
ing Dyes and Tracer Molecules In Vitro 

The materials and methods for this aim utilized the corona gen-

erating instrument system described in Section 3.1.1.  In addition, 

both the corona generators described in Section 3.1.1 were also util-

ized.  The procedure for characterizing the corona discharge was iden-

tical to the procedure presented in Section 3.1.2. 

3.2.1  Cell Culture 

B16F10 (ATCC CRL-6475) murine melanoma cells were grown in 

cell culture flasks (Costar 3000; Corning Inc., Corning, NY) in a stan-

dard 37 °C incubator in a humidified atmosphere that contained 5% 

CO2.  Cells were cultured in McCoy’s 5A medium (MediaTech Inc., 

Herndon, VA) supplemented with 10% (v/v) fetal bovine serum (Medi-

aTech Inc) and 50 µg/ml gentamicin sulfate (MediaTech Inc.).  B16F10 

cells were subcultured 1:12 using standard methods that included the 

use of trypsin (0.25% trypsin in HBSS without calcium and magne-

sium, MediaTech Inc.) to release the adherent cell line. 

Batches of B16F10 cells were prepared for experiments by first 

determining their viability using trypan blue (MediaTech, Inc).  All 

batches of cells used for this study were 95% viable or greater.  Quan-

tities of 5 x 105 cells were plated or seeded into organ culture dishes 
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(Falcon 353037, Becton Dickinson, Franklin Lakes, NJ).  These dishes 

had an 18 mm diameter surface for cell growth.  Dishes were seeded 

12-18 hours prior to treatment with corona ions to allow for complete 

attachment of the cells to the growth surface. 

3.2.2  Tracer Molecules 

Calcein (C0875, Sigma, St. Louis, MO) and SYTOX-green 

(S7020, Molecular Probes) were used for this study.  Calcein is an auto 

fluorescing tracer molecule that has a charge of -4 in solution whereas 

SYTOX-green is a nucleic acid stain that is an unsymmetrical cyanine 

dye with three positive charges.  When SYTOX-green is bound to nu-

cleic acid there is a large increase in the fluorescence emission with 

the greatest emission occurring when it is bound to double stranded 

DNA [75,76].  Both these molecules used were cell membrane imper-

meant making them suitable for use as indicators of intracellular mo-

lecular delivery. 

3.2.3  Procedure for Molecular Delivery 

Calcein was delivered to cultured B16F10 cells using the com-

mercially available wire corona generator.  The protocol included first 

aspirating the growth media from seeded organ culture dishes and re-

placing it with 250 ǋl of 20 ǋM calcein in phosphate buffered saline 

(PBS) over the cells in the dishes.  Next, the corona generating system 
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was immediately lowered over the dish to expose the cells to positive 

corona ions, as in Figure 3.9, for either six or ten minutes at an ambi-

ent temperature of 22 °C.  After ion exposure, the cells were incubated 

at 37 °C for ten minutes prior to fluorometric analysis.  Control sam-

ples were treated by aspirating growth media and then exposing 

B16F10 cells to either PBS or calcein only without the influence of co-

rona charge.  These control samples were then left on the counter top 

for ten minutes at 22 °C and then ten minutes at 37 °C in order to 

match the protocol used for the samples that were exposed to corona 

charge.   

 

 

 

 
 

Figure 3.9: Schematic representation of the two wire co-
rona generator treating B16F10 cells cultured 
on the bottom of a culture dish. 

 

SYTOX-green was delivered to cultured B16F10 cells using the 

nine needle corona generator.  After aspirating the growth media, 250 

ǋl of PBS was added to the sample and either positive or negative co-

rona charge was applied for ten minutes.  Following the completion of 

the corona treatment, 250 µl of 1 ǋM SYTOX-green was added to each 
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culture dish.  Samples were then incubated at 37 °C for ten minutes 

prior to fluorometric analysis.  Control samples that were not sched-

uled to receive corona treatment were simply incubated with SYTOX-

green for ten minutes at 37 °C prior to fluorometric analysis.  

3.2.4  Fluorometric Analysis 

Fluorometric analysis was performed on all samples following the 

ten minute incubation at 37 °C.  The analytic procedure for calcein, in-

cluded aspirating all the liquid from each culture dish, gently washing 

the growth surface three times with 1 ml aliquots of PBS and adding a 

final 1 ml volume of PBS.  The cells were then lysed by adding 1 ml of 

0.4% sodium docecyl sulfate (SDS) solution to each dish to release in-

tracellular calcein.  The resulting solutions were centrifuged at 225 u  g 

for five minutes to remove cellular debris.  The supernatants were 

then analyzed fluorometrically (LS-3B, Perkin-Elmer, Waltham, MA) 

using an excitation of 481 nm and an emission of 515 nm. 

The procedure for fluorometric analysis of SYTOX-green was dif-

ferent.  After the ten minute incubation of cells and SYTOX-green, the 

stain and PBS bathing the cells was aspirated and replaced with 250 ǋl 

trypsin to detach the cells.  Ten minutes later, 1 ml of PBS was added 

to each dish to suspend the cells.  Finally, the resulting suspensions 



 

43 

were analyzed using an excitation of 505 nm and an emission of 525 

nm (LS-3B, Perkin-Elmer, Waltham, MA). 

3.2.5  Viability Testing After Corona Charge Treatment   

Viability was determined using the trypan blue dye exclusion test 

[77].  Cell samples with no tracer molecules present were exposed to 

positive or negative corona ions using the nine needle corona genera-

tor for ten minutes.  Cells were exposed to +30PA or -85PA using ± 6 

kV applied to the corona generator.  Control samples were not treated 

with ions.  Samples were returned to the incubator after exposure to 

corona ions.  The circular dish was then divided into four quadrants by 

drawing lines corresponding to two orthogonal diameters on the bot-

tom of the dish.  All media was aspirated and replaced with 150 µl of 

PBS and 50 µl of trypan blue.  Three fields of view were randomly cho-

sen in each quadrant and viewed at 250X.  The numbers of viable and 

nonviable cells were enumerated in each field and data for all four 

quadrants in each sample were summed.  Observations were made on 

different samples at 30 minutes, 6 hours and 12 hours following co-

rona ion treatment.  Control samples, not treated with corona ions, 

were also analyzed in an identical manner at the same time points.  
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3.2.6  Statistical Analysis   

Mean fluorometric data from samples were compared using a 

one tailed t-test.  A one tailed t-test was used to establish that the 

mean fluorescence of groups that received corona ion exposure were 

higher than the controls.  A 95% level of significance was chosen.  If 

the p values obtained when comparing the two sets of means using 

the one tailed t-test were less than or equal to 0.05 (p�0.05), then 

the differences were considered statistically significant and the null 

hypothesis that the two means are not different was rejected in favor 

of the alternate.   

3.3  Specific Aim 3: To Investigate the Use of Corona Ions for Deliver-
ing Bleomycin In Vitro and to Established Tumors in an Animal 
Model 

The instrument system used to drive corona generation was the 

same as described in Section 3.1.1.  The nine needle corona ion gen-

erator was used for all the experiments in this aim.  B16F10 cells used 

for in vitro and in vivo experiments were cultured as described in sec-

tion 3.2.1. 

3.3.1  Corona Discharge Characterization 

The corona ions were generated using the protocol as described 

in Section 3.1.2.  The system was characterized by determining the 
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quantity of charge collected on a stainless steel plate located 7 mm 

below the generator.  This distance was identical to the distance be-

tween the generator and cultured cells during treatment.  In experi-

ments carried out in this aim, the quantity of charge that the cells 

were exposed to was increased by increasing the input voltage to the 

corona generator.  The nine needle device generated +45µA at an ap-

plied potential of +6.5 kV and -95µA when the polarity was reversed 

to -6.5 kV. 

3.3.2  Procedure for Molecular Delivery of Bleomycin In Vitro   

Bleomycin is a commonly used cytotoxic drug that causes nicks 

in double and single stranded DNA.  It was known from previously 

published work [78] that IC50 for bleomycin in B16F10 cells is 1 x 10-4 

M and that concentrations lower than 1 x 10-5 M have little or no effect 

on the growth of B16F10 cells in culture.  Bleomycin is a well known 

chemotherapeutic agent, however, its use has been hindered by the 

fact that it does not readily cross the cell membrane [79, 80].  Bleo-

mycin has been successfully delivered using electroporation and very 

little drug is required to achieve a response (cell death). 

In vitro experiments included six different combinations of bleo-

mycin (NDC 0703-3155-01, Sicor Pharmaceuticals Inc., Irvine, CA) 

treatment and corona exposures.  The treatment conditions were: no 
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treatment, corona exposure only for ten minutes, bleomycin exposure 

only and bleomycin exposure combined with corona exposure for two, 

five and ten minutes.  Triplicate samples were used for each treatment 

condition.  The protocol included aspirating the growth media from cul-

ture dishes, seeded with 1 x 105 cells as described in Section 3.2.1 and 

replacing it with 250 µl of 1 x10-5 M bleomycin in PBS.  The corona 

generating system was lowered over the dish to expose the cells to co-

rona ions of positive or negative polarity for the times mentioned 

above at ambient temperature (22°C).  After a ten minute incubation 

period, growth media was added to each dish to make the final volume 

3 ml.  The culture dishes were then returned to incubator for further 

analysis.  

3.3.3  MTT Survival Assay for Cultured Cells 

Forty eight hours after treatment the samples were analyzed us-

ing a standard MTT (Thiazolyl Blue) survival assay [78]. This assay in-

cluded exposing the plated cells to 1 mg/ml MTT reagent for two hours 

at 37°C in growth media.  After two hours the media containing the 

MTT was aspirated and 400 µL of DMSO (D587needle, Sigma, St. 

Louis, MO) was added to each culture dish to dissolve the cells and the 

resulting intracellular purple crystalline product which is the basis of 

this colorimetric assay.  Four 100 µL aliquots from each treated dish 



 

47 

were analyzed for optical density (OD) using a microplate reader 

(EL340, BioTek Instruments Inc., Winooski, VT) with the reference fil-

ter set at 630 nm and the test filter set at 570 nm. The resulting OD 

data from samples with like treatment groups were combined to obtain 

a mean OD for each treatment group.  

3.3.4  Tumor Induction 

B16F10 cells were removed from culture using the method de-

scribed in Section 3.2.1 and washed three times in phosphate buffered 

saline by centrifugation (225 u  g).  The washed cells were suspended 

in normal saline and enumerated using a hemacytometer.  Cells were 

used only if the viability of the enumerated culture was above 95%.  

Prepared cells were injected into the shaved left flank of female 6-8 

week old C57Bl/6 mice.  Each animal received a subcutaneous injec-

tion containing 1 x 106 cells in 50 µl saline.  Tumors were allowed to 

grow for approximately ten days which resulted in tumors that were 

approximately 80 mm3.  Tumor volumes were determined by measur-

ing three mutually orthogonal diameters using digital Vernier calipers.  

Measurements where converted to volumes using the formula 

V 6Suuu cba  were V was the volume and a, b and c were the three 

measured dimensions (mm). 
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3.3.5  Procedure for In Vivo Delivery of Bleomycin to Tumors  

Tumor bearing mice were randomized into different treatment 

groups.  Each group received a different treatment consisting of bleo-

mycin injection only, corona exposure only, exposure to both corona 

ions and bleomycin or no treatment (controls).  In addition, some 

groups received the same treatment on three successive days.  Details 

of the treatment scheme are shown in Table 3.1.  The treatment pro-

tocol included anesthetizing each mouse with isoflurane (Isothesia, 

Abbott Laboratories, IL) using a calibrated vaporizer.  Anesthesia was 

maintained using 1.5% isoflurane.  All mice remained in an anesthe-

tized state until treatment was complete.  Animals scheduled to re-

ceive bleomycin were injected with a volume of the drug that was 

equivalent to 50% of the tumor volume (measured immediately prior 

to treatment).  The concentration of the drug was 4 units/ml in sterile 

injectable saline and a single point injection was made directly into the 

center of the tumor.  All other animals received an injection of saline 

equivalent to the 50% of their tumor volumes.  Mice that had corona 

ions as all or part of their treatment were exposed to either positive or 

negative corona charge for 20 minutes as indicated in Table 3.1.  This 

was achieved by lowering the corona ion generator towards each ani-

mal to position the center needle of the generator 5 mm from the cen-

ter of the tumor.  
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  Table 3.1: Treatment conditions for in vivo delivery of bleomycin 

No Treatment 

Bleomycin only once 

20 min. Negative Corona only 

20 min. Positive Corona only 

Bleomycin + 20 min. Positive Corona once 

Bleomycin + 20 min. Negative Corona once 

Bleomycin only on three successive days 

20 min. Positive Corona only on three successive days 

20 min. Negative Corona only on three successive days 

Bleomycin + 20 min. Positive Corona on three successive days 

Bleomycin + 20 min. Negative Corona on three successive days 

 

Corona treatment was started two minutes after bleomycin in-

jection.  A saline injection was substituted for bleomycin for tumors 

not scheduled to receive the drug.  The two minute delay time be-

tween injection and start of corona ion exposure was determined to be 

sufficient to allow the drug to distribute within the tumor [79].  Post 

treatment follow-up consisted of measuring the volume of each indi-

vidual tumor at periodic intervals as described in section 3.3.4.  These 

volumes were normalized to the day zero (day of treatment) tumor 

volume for each individual animal.  Normalized tumor volumes were 
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expressed as percentage increase or decrease over day zero and mean 

data was computed for animals in the same treatment group on the 

same follow-up day.  Animals were humanely euthanatized when their 

tumor volumes reached 1000 mm3. 

3.3.6  Statistical Analysis 

In vitro data analysis was conducted by comparing the means 

from the MTT survival assay using a one tailed t-test.  The means of 

the controls and treatment groups were compared to see if the treat-

ment set had a lower mean absorbance.  Sets of two means were 

compared at a significance level of 95% as described in section 3.2.6.  

In vivo data analysis was performed in a similar manner by comparing 

mean normalized tumor volumes for each group on a particular day 

post treatment to test for differences at a 95% significance level.  This 

data was also examined using a one tailed t-test. 

3.4  Specific Aim 4: To Evaluate the Use of Corona Ions for Delivering 
Plasmid DNA to Cells in the Skin of a Murine Model 

The corona ion generation apparatus for Specific Aim 4 was the 

same as used in Specific Aim 3 and the same procedure was used to 

calibrate the instrument system.  The only difference in Specific Aim 4 

was that more current was desired relative to earlier work and so an 

applied potential of +/-7.5 kV was employed to generate, respectively, 
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55 µA or 165 µA of corona ions.  Hence, the same nine needle corona 

ion generator was used and instead of 6.5 kV, the voltage applied was 

7.5 kV.  The higher current was chosen in accord with analysis of data 

from experiments in Specific Aim 3 that focused on delivering bleomy-

cin to tumors in vivo.  It was hypothesized that an increase in current 

would be necessary to drive DNA, which is a bigger molecule.  Female 

C57Bl/6 mice were used as the animal model.  The procedure for de-

livery of genes, including the experimental conditions and post treat-

ment analysis which were different from the tumor work are described 

below. 

3.4.1  Procedure for In Vivo Delivery of Reporter Plasmid Coding for 
Luciferase  

The capability of corona charge to facilitate in vivo uptake of 

plasmid DNA was examined using the skin of C57Bl/6 mice (female, 6-

7 weeks old).  A reporter plasmid that coded for the enzyme luciferase 

(gWizTM Luciferase, Aldevron, Fargo, ND) was used.  The target tissue 

was a shaved area of skin on the left flank.  Mice were randomly di-

vided into treatment groups as shown in Table 3.2.  Each group re-

ceived a different treatment consisting of plasmid injection only, co-

rona exposure only, exposure to both corona ions and plasmid for 10 

or 30 minutes and no treatment.  In addition, two groups received 

treatments of plasmid and positive or negative corona exposure with a 
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grounded counter electrode inserted subcutaneously below the site of 

injection.  The counter electrode was a 28 gauge stainless steel acu-

puncture needle and the part of the electrode that was outside the 

body was covered with insulation so that the charges would not drift 

directly to the grounded electrode. 

Each mouse was first anesthetized using isofluorane, as de-

scribed in section 3.3.5 and remained in this state until treatment was 

complete.  All animals scheduled to receive the plasmid got an in-

tradermal injection of 50 µl saline that contained 2 mg/ml of the re-

porter plasmid.  All other animals received a 50 µl injection of saline 

only.  After plasmid injection, the corona ion generator was lowered 

toward each animal to position the center needle of the generator 1 

cm from the center of the bubble formed in the skin due to injection.  

Mice that received exposure to corona ions as all or part of their 

treatment were exposed to either positive or negative corona charge 

for the amount of time indicated in Table 3.2. 
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Table 3.2: Treatment conditions for in vivo delivery of reporter  
 plasmid coding for luciferase (LUC) 

 

No Treatment 

50µl of LUC Plasmid only   

30 min. of  Positive Corona only 

30 min. of  Negative Corona only 

50µl of LUC Plasmid + 10 min. Positive Corona 

50µl of LUC Plasmid + 30 min. Positive Corona 

50µl of LUC Plasmid + Counter Electrode+ 10 min. Positive Corona 

50µl of LUC Plasmid + 10 min. Negative Corona 

50µl of LUC Plasmid + 30 min. Negative Corona 

50µl of LUC Plasmid + Counter Electrode+ 10 min. Negative Co-
rona 

 

3.4.2  Analysis of Delivered Reporter Plasmid Coding for Luciferase 

Luciferase is an enzyme commonly found in nature that partici-

pates in a bioluminescent reaction when allowed to react with an ap-

propriate substrate.  This reaction takes place in many bioluminescent 

organisms.  The injected plasmid if delivered inside the cell would be 

acted upon by the cell machinery and the enzyme luciferase would be 

produced.  The analysis was performed to examine the expression of 

luciferase by the cells.  Light is emitted when luciferase catalyses the 

oxidation of a chemical substrate called luciferin.  The oxidation of luci-
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ferin by luciferase, in the presence of ATP, is a very energy efficient 

reaction and the subsequent photon emission can be detected with a 

sensitive CCD camera.  Therefore, all mice were intraperitonealy 

injected with 150 mg/kg of luciferin at prescribed time points after the 

plasmid was delivered.  Luciferin was allowed to distribute for about 15 

minutes and the mice were then anaesthetized and imaged using an 

IVIS 200 imaging system (Xenogen, Hopkinton, MA).  The images 

were then analyzed by proprietary software from Xenogen (Living 

Image 2.6).  A region of interest (ROI) was selected; this was the 

region over which the expressed luciferase protein was detected.  The 

average photon flux in photons/cm2/sec over the ROI was recorded.  

The same procedure was followed for all animals. 

3.4.3  Statistical Analysis 

In vivo data analysis was conducted by comparing the mean 

photon fluxes from all the groups at specific time points after DNA de-

livery.  A one tailed t-test was used to determine if the mean photon 

flux of the groups that received exposure to both the plasmid and ei-

ther type of corona ions were greater than the controls.  The groups 

which received plasmid only or corona ions exposure only were desig-

nated as controls.  A one tailed t-test was performed on each day the 

photon flux was measured and the two sets of means were compared 
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to check for differences at a significance level of 95% as described in 

section 3.2.6. 

3.5  Specific Aim 5: To Investigate the Mechanism of Interaction of Co-
rona Ions with Biological Cells 

In addition to using B16F10 murine melanoma cells, fibroblasts 

[ATCC -CRL-2522-BJ] were also used for one part of this study.  Same 

cell culture protocol used for B16F10 cells was used for the fibroblasts.  

All protocols and materials were same as used in Specific aims 1 and 

2.  Cells were grown on culture dishes as described previously, the co-

rona ion generator was lowered on the top of the dish and ions were 

deposited on the surface of the media covering the cells.  The nine 

needle corona generator was used for this specific aim and produced 

45 µA at an applied potential of +6.5 kV and – 95 µA when the polarity 

was reversed.   

3.5.1  Cell Culture 

The procedure for growing B16F10 cells was same as mentioned 

in 3.2.1.  Fibroblasts [ATCC -CRL-2522-BJ] cells used in addition for 

this study were grown in similar cell culture flasks in a standard 37 °C 

incubator in a humidified atmosphere which contained 5% CO2.  Cells 

were cultured in DMEM (MediaTech Inc., Herndon, VA) supplemented 

with 10% (v/v) fetal bovine serum (MediaTech Inc.) and 50 µg/ml 
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gentamicin sulfate (MediaTech Inc.).  Fibroblasts were also subcultured 

1:12 using standard methods that included the use of trypsin (0.25% 

trypsin in HBSS without calcium and magnesium, MediaTech Inc.) to 

release the adherent cell line.  Batches of fibroblasts were prepared for 

experiments by first determining their viability using trypan blue (Me-

diaTech, Inc).  All batches of cells used for this study were 95% viable 

or greater.  5 x 105 cells of both kinds were plated into organ culture 

dishes used in section 3.2.1 prior to treatment. 

3.5.2  Interaction of Deposited Corona Ions with the Media In Vitro 

Experiments were performed in order to elucidate some details 

of the interaction of corona ions with the media surrounding the cells.  

B16F10 cells used were exposed to corona ions of either polarity and 

experimental observations were performed.  Observations were made 

on cells exposed to corona ions for ten minutes followed by SYTOX-

green exposure to delineate the area which had maximum delivery of 

SYTOX-green.  Also a visual model was developed to depict the inter-

action of the ions deposited on the surface of the media. 

3.5.3  Mechanism of In Vitro Delivery Based on Experimental Observa-
tion 

Experiments were designed and performed to investigate physi-

cal parameters as a cause for molecular delivery.  Temperature and pH 
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were first measured to determine if a change in any of these two could 

cause molecular delivery.  Following this, effect of corona ion deposi-

tion on transmembrane potential and cell adhesion was observed. 

3.5.3.1  Temperature and pH Measurements 

Temperature change of the media exposed to corona ions was 

studied in this section.  B16F10 cells were grown at the bottom of cul-

ture dishes and the media surrounding the cells was exposed to either 

ten minutes of positive or negative corona and the temperature was 

measured with an infra red thermometer (Fluke #62, WA) and a 

Fischer scientific alcohol thermometer.  Following this, pH measure-

ments were made separately using a PHR-146 microelectrode (LAZAR 

Research Laboratories Inc., Los Angeles, CA).  Both temperature and 

pH measurements of the media surrounding the cells were performed 

before and after corona ion exposure.  Six temperature and pH meas-

urement experiments were performed in triplicate on different days.  

Hence the mean temperature and pH from six different experiments 

performed on six different days was measured to see if there was a 

change. 

3.5.3.2  Effect of Corona Ions on Transmembrane Potential 

The effect of corona ion exposure on the resting membrane po-

tential of cells was studied using the voltage sensitive dye Di-8-
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ANEPPS (Molecular Probes, Eugene, OR).  Di-8-ANEPPS is an amphi-

philic dye with a hydrophilic head and a hydrocarbon chain [81].  Due 

its structure the dye intercalates in the lipid bilayer and orients itself 

perpendicular to the membrane/aqueous interface.  The dye increases 

in fluorescence, due to change in its electronic structure when there is 

a change in the packing of the lipids in the plasma membrane [82].  

Hence an increase in fluorescence after corona ion exposure would 

confirm a change in resting membrane potential as well as a change in 

the structure of the lipid bilayer.  Di-8-ANEPPS has a very fast re-

sponse time and the increase in fluorescence due to the dye is only 

about 10-25% [83].  B16F10 and fibroblast cells used for this aim 

were stained with 1µM dye for 20 minutes in an incubator at 37 °C in a 

humidified atmosphere that contained 5% CO2.  Following the staining 

the cells were treated with either positive or negative corona ions for 

five minutes.  The treatment was carried out on an inverted micro-

scope which had the excitation source at the bottom. This arrange-

ment was used so that the images could be captured instantly after 

the corona exposure ceased and there would be no time lost in adjust-

ing or moving the treated sample.  Fluorescence images were captured 

with the inverted microscope (Leica 520804, Germany) to see the vis-

ual effect following the ion exposure.  The microscope had a digital 

camera (#15.264MP, Diagnostic Instruments Inc., MI) mounted on top 
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and the images were captured using proprietary software (SPOT 4.5, 

Diagnostic Instruments Inc., MI).  The captured images were then 

analyzed and the mean light intensity of each image was calculated 

using Daime (Free Software by Holger Daime). 

3.5.3.3  Effect of Corona Ion Exposure on Cell Adhesion 

B16F10 cells were used for this study and were stained with a 

fluorescent dye CMFDA (Invitrogen. Eugene, OR).  CMFDA belongs to 

the family of fluorescent chloromethyl derivatives that freely permeate 

the membranes of live cells.  They react with intracellular components 

to produce cells that are both fluorescent and viable for at least 24 

hours after loading.  CMFDA has a relatively low acid dissociation con-

stant (pKa), due to which bright green fluorescence in the cytoplasm 

will be detected at all physiological pH levels [84].  Half a million cells 

seeded in culture dishes, as described in section 3.2.1, were stained 

with CMFDA for two hours.  Following staining, the cells were exposed 

to either positive or negative corona ions for ten minutes.  Images of 

cells were captured at 0, 5, 10 and 15 minute intervals after the start 

of corona ion exposure.  Fluorescent images were captured with an in-

verted microscope (Leica 520804, Germany) that had a digital camera 

(#15.264MP, Diagnostic Instruments Inc., MI) mounted on the top and 

images were captured using proprietary software (SPOT 4.5, Diagnos-
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tic Instruments Inc., MI ).  An image was captured at time zero and 

the excitation source was turned off until the next time when the im-

age had to be captured.  This was done in order to protect the cells 

from continuous exposure to the excitation source.  

3.5.4  Rate of Uptake of SYTOX-Green 

Rate of uptake of the nucleic acid probe SYTOX-green was car-

ried out to facilitate the development of a model to describe the time 

dependence of molecular transport into corona ion treated cells.  A 

quantity of 5 x 105 B16F10 cells were grown in 12 well plates (Falcon 

353047, Becton Dickinson, Franklin Lakes, NJ) similar to the procedure 

explained in 3.2.1.  Uptake of the dye was followed starting immedi-

ately after corona charge treatment ceased.  The procedure for meas-

uring the uptake of SYTOX-green was carried out using a fluorometer 

(FLx800, BioTech Instruments Inc., Winoski, VT).  The fluorometer 

was programmed to read every 15 seconds throughout a 35 minute 

follow-up period.  Each fluorescence reading performed was an aver-

age of 10 different spots read on the cell growth surface of a particular 

sample.   

3.6  Corona Ions: Safety Concerns 

As described in the section 1.3 on generation of corona ions at 

atmospheric pressure, a high voltage around ± X kV (3-8KV) was re-



 

61 

quired for ionization of air.  With the use of input voltages reaching a 

few kilovolts the fields can reach as high as 9u106 V·m-1 very close to 

the discharge electrode as shown in Figure 4.15.  Proximity of such 

high value electric fields close to biological subjects could be a con-

cern.  Two examples of phenomena in daily life where discharges are 

encountered but are not fatal are a discharge to a door knob after 

walking on a carpet and charging of hair and body.  The reason for 

these discharges not being as dangerous is that the power dissipated 

in these applications is very low.  In the case of ions generated by the 

system used in this research the power dissipated is also very low due 

to low input current (100 µA) hence there is a very remote possibility 

of damage to tissues or biological cells.  In addition to this the target 

tissue or cells are at a distance 7 mm away from the discharge elec-

trode.  The field near the electrode decreased with distance away from 

it.   

The values of the electric fields used in typical electroporation 

experiments are generally in the range of 105 to 108 V·m-1 [110-113].  

The associated current in these electroporation experiments is in milli-

amperes [90, 114] to amperes [115, 116] making the power dissi-

pated in the range of tens of thousands to gigawatts [116].  In animal 

studies and clinical trials focused on treating tumors and other tissues, 

direct contact has resulted in muscle contraction, pain, or tissue dam-
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age [32, 33, 73 and 74].  The values of electric fields during corona 

ion generation that cells would be exposed were modeled to be around 

2u105 V·m-1 which is close to values used in electroporation experi-

ment.  The difference between the two is the power dissipated which is 

around 0.7 watts (input voltage times the input current).  Hence any 

concerns that can arise due to high values of exposed electric fields 

can be put to rest.  Visual observations on mice did not reveal any irri-

tation or damage to the skin as compared to the untreated controls.   

Corona discharge has been used in the past to kill dust mites, al-

lergens and for biological decontamination.  The main mechanism of 

destruction was attributed to the charged species generated and not 

due the ozone that was generated as a by-product [44].  It has also 

been determined from a previous study that the ozone generated in 

this kind of a corona discharge is well below the safety limit recom-

mended by the EPA [117].  Correlation between the ozone generated 

and the input power used was investigated.  There was found to be a 

direct relation between the power input to the system and the ozone 

generated.  The input power in the system used in the current study is 

0.7 watts which much lower than the one carried out in the study by 

Yehia.  Hence the ozone generated is also subsequently lower and any 

concern of ozone generated as a by product of corona ion generation 

effecting the cells is very remote.  Another concern with atmospheric 
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plasmas is exposure of biological cells to UV radiation.  Most non-

equilibrium plasmas operating at atmospheric pressure are poor 

sources of UV and hence this should not be a concern either [118]. 
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4  RESULTS 

 

4.1  Specific Aim 1: To Design, Construct and Characterize a Corona 
Generating System Suitable for Application in Living Systems 

Determining the quantity of corona charge generated versus ap-

plied voltage was the primary means of characterizing the corona gen-

erating system, hence this experiment was carried out first.  The 

commercially available corona generator that was used to test the ini-

tial delivery experiments was used for the corona charge characteriza-

tion.  Figure 4.1 shows results plotted with the independent axis verti-

cal and the dependent axis horizontal.  The charge emitted from the 

commercial corona generator was roughly a linear function of the ap-

plied voltage as shown in the figure and was similar to the relationship 

shown in Figure 1.2.  The experiments carried out to obtain results in 

Figure 4.1 were for a fixed distance of 5 mm between the bottom of 

the ground plate and the charge collecting plate.  This distance was an 

approximation to the distance that would be used in subsequent in vi-

tro and in vivo delivery experiments.  The maximum current that could 

be generated for a positive applied potential was about 6.5 ǋA and 10 

ǋA for negative applied voltage.  Attempts to generate more current 
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for both cases by increasing the applied voltage resulted in arcing or 

sparkover. 
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Figure 4.1: Voltage applied (kV) to the commercial co-
rona ion generator versus charge collected 
(ǋA). 

 

A fixed distance of 5 mm was used for initial characterization of 

the corona generator.  A second experiment was performed to see ch- 

anges in the quantity of charge collected by varying the distance be-

tween the charge collecting plate and the corona generator.  Distance 

was varied from 1 mm to 7 mm and the results from this experiment 

are shown in Figure 4.2.  A positive voltage of 5.5 kV was applied to 

the corona generating elements.  As the distance from the bottom of 

the ground plate to the charge collecting plate was increased, the 
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charge collected decreased exponentially as shown in Figure 4.2.  It 

can be observed that the last point in the graph is 6.74 mm; this was 

the approximate distance between the generator ground plate to the 

bottom of the cell growth surface for in vitro experiments performed in 

Specific Aim 2. 

The third characterization experiment was designed to maximize 

the amount of charge that could be generated with the commercial co-

rona generating element without reducing the distance between the 

ion generating source and the charge collecting plate.  The strategy to 

maximize current generated involved, isolating/confining the gener-

ated corona ions in the space between the generator and ground plate 

using plexi-glass tubes with different diameters and heights.   
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Figure 4.2: Charge collected (ǋA) from the commercial 
corona generator as a function of distance 
from the bottom of the charge collecting 
plate.  A positive voltage of 5.5 kV was ap-
plied to the corona generator. 
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Figure 4.3: Corona charge collected (ǋA) versus positive 

applied voltage (kV) with different plexi-glass 
cylinders.  

Air 

Cover 1 – id 18 mm 

Cover 2 – id 12.63 mm 
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Figure 4.3 shows the results of experiments with the different 

plexi-glass cylinders.  As indicated in the figure, cylinders with two dif-

ferent diameters were utilized along with an ambient condition that 

was used as a control.  Cover 1 was a plexi-glass cylinder with an in-

ner diameter of 18 mm, which is the same inner diameter of the cul-

ture dishes that were planned for in vitro experiments.  Cover 2 was a 

cylinder with inner diameter that was same as the diameter of the hole 

in the bottom of the ground plate (about 12.64 mm). The height of 

both cylinders, cover 1 and cover 2, was 7 mm, which was the dis-

tance between the bottom of the ground plate and the culture dish 

used in subsequent experiments.  The polarity of the applied voltage 

was positive.  Results from Figure 4.3 clearly indicated corona ion gen-

eration in open air resulted in the highest current relative to each cyl-

inder.   

The current generated under the conditions shown in Figure 4.3 

was lower compared to that shown in Figure 4.1 due the difference in 

the distance between the corona generator and the charge collecting 

plate.  A distance of 5 mm was used to generate results in Figure 4.1 

whereas a distance of 7 mm was used to generate results in Figure 

4.3.  Results of these experiments with the commercially available ion 

generator motivated the design of a new corona ion generator capable 

of producing more charge because it was hypothesized that better de-
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livery results would be obtained using more charge.  The commercial 

corona generator used for characterization experiments had a linear 

corona generating electrode while the culture dishes that were planned 

to be used for in vitro experiments were circular.  Hence to better fit 

the circular geometry of the tissue culture dishes and solid tumors that 

would be treated in subsequent experiments, a circular geometry was 

chosen for the new corona generator. 

4.1.1  Design of a New Corona Generator 

After attempts to increase the amount of charge from the exist-

ing instrument system (commercial corona generator) were unsuc-

cessful, a second generation corona generator was designed.  It was 

hypothesized that with this new design there would be an increase in 

corona charge and also it would better match the geometry of the cir-

cular culture dishes used for delivery experiments.  A needle electrode 

geometry was chosen as compared to thin wires as in the commercial 

generator as multiple needle emitters were thought to give more cur-

rent.  As described in the Section 1.3 the key to the generation of co-

rona ions is the thickness of the tip of the ion generating electrode, 

hence experiments were first carried out to determine what needle 

thickness and electrode configuration would maximize current output 

with this new geometry.  Needle diameters of 0.35, 0.6, 0.7, 0.8 and 
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0.9 mm were used to test which needle configuration would generate 

maximum amount of corona ions.  All needles had tapered tips. 

The new corona generator was custom made such that the nee-

dles would form an array within a circular Teflon rod, 38 mm by 26 

mm, diameter to height; details of the instrument system are de-

scribed in Section 3.1.1.  Experiments were first carried out with 0.35 

mm diameter needles.  Four different needle configurations were cho-

sen; first nine needles were inserted through holes in the Teflon rod 

such that the tapered tips just protruded below the lower polymer sur-

face.  One needle was located at the center and the remaining eight 

needles were equally spaced around a 11 mm diameter circle as shown 

in Figure 4.4.  Three other configurations with eight needles, five nee-

dles and four needles inserted in the Teflon rod were also investigated.  

To achieve the eight needle configuration, only the central needle was 

removed from the nine needle configuration while measuring charge.  

The five needle configuration consisted of the central needle and four 

needles inserted on two orthogonal diameters. 
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Figure 4.4: Corona generator showing the nine needle 
configuration. 

 

The four needle configuration had only four needles at opposite 

ends of two perpendicular diameters.  The needles were connected to-

gether at the top to facilitate connection to the high voltage power 

supply.  An annular stainless steel ground plate was affixed to the bot-

tom of the Teflon rod and was connected to the ground of the power 

supply.  The inside diameter of the ground plate was 28 mm.  The 

needle tips were located in the plane of the top of the ground plate. 

Figures 4.5 and 4.6 show results of charge generated in different con-

figurations for the 0.35 mm thickness needles for positive and nega-

tive polarities.  Similar experiments were carried out with the other 

needle sizes and different needle configurations.  The results of these 
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remaining experiments are shown in Figures 4.7-4.14.  In conclusion, 

the nine needle configuration with 0.35 mm diameter was judged to be 

the best option for delivery experiments.  Even though results pre-

sented below indicated that some other needle configurations and 

needle thickness gave more charge, the needle size chosen was 0.35 

mm based on the availability of these needles and also the fact that 

microscopic observations revealed that they had a uniform tip size as 

compared to the other needle sizes.  Also the 0.35 mm needles were 

made of a surgical grade of stainless steel [SUS304] that was different 

from the other needles used and hence had the potential to last longer 

as compared to all other needles. 



 

73 

0

5

10

15

20

25

30

35

40

45

2.3 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 5.9
Applied Voltage in kV

C
ha

rg
e 

C
ol

le
ct

ed
 in

 m
ic

ro
 a

m
ps

4-needle 5-needle

8-needle 9-needle

 

Figure 4.5: Corona charge collected (ǋA) versus ap-
plied voltage (kV) for a needle thickness of 
0.35 mm and the applied polarity was posi-
tive. 

 

0

20

40

60

80

100

120

140

160

2.3 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 5.9

Applied Voltage kV

C
ha

rg
e 

C
ol

le
ct

ed
 in

 m
ic

ro
 a

m
ps

4-needle 5-needle

8-needle 9-needle

 

Figure 4.6: Corona charge collected (ǋA) versus ap-
plied voltage (kV) for a needle thickness of 
0.35 mm and the applied polarity was 
negative. 
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Figure 4.7: Corona charge collected (ǋA) versus ap-
plied voltage (kV) for a needle thickness of 
0.6 mm and the applied polarity was posi-
tive. 
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Figure 4.8: Corona charge collected (ǋA) versus ap-
plied voltage (kV) for a needle thickness of 
0.6 mm and the applied polarity was nega-
tive. 
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Figure 4.9:  Corona charge collected (ǋA) versus ap-
plied voltage (kV) for a needle thickness of 
0.7 mm and the applied polarity was posi-
tive. 
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Figure 4.10: Corona charge collected (ǋA) versus ap-
plied voltage (kV) for a needle thickness 
of 0.7 mm and the applied polarity was 
negative. 
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Figure 4.11: Corona charge collected (ǋA) versus ap-
plied voltage (kV) for a needle thickness 
of 0.8 mm and the applied polarity was 
positive. 
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Figure 4.12: Corona charge collected (ǋA) versus ap-
plied voltage (kV) for a needle thickness 
of 0.8 mm and the applied polarity was 
negative. 
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Figure 4.13: Corona charge collected (ǋA) versus ap-
plied voltage (kV) for a needle thickness 
of 0.9 mm and the applied polarity was 
positive. 
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Figure 4.14: Corona charge collected (ǋA) versus ap-
plied voltage (kV) for a needle thickness 
of 0.9 mm and the applied polarity was 
negative. 
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Electric field intensities around one needle and around the com-

plete array of nine needles were simulated using software packages 

Maxwell 2D [Ansoft Inc., PA] and COMSOL Multiphysics [COMSOL Inc., 

MA].  The electrostatic model in COMSOL Multiphysics and Ansoft 

Maxwell were used to estimate the electric field values produced by 

the corona ion generator.  The value of the electric field is the negative 

gradient of the potential VE �� and is estimated using the Laplace 

equation 02  � V .  The Laplacian of the scalar field V is also the diver-

gence of the gradient of V .  Solving of the Laplace equation helped 

determine whether the electric field values were due to a source or a 

sink [85].  

Since the needle size chosen from the experiments above was 

0.35 mm the simulations used this needle size.  Figure 4.15 shows the 

values of electric fields generated around one needle for positive ap-

plied voltage and Figure 4.16 simulates the complete in vitro situation.  

As shown in Figure 4.15 the highest value of electric field was close to 

the needle tip for an applied voltage of 7 kV and was above 9.0 MV/m.  

Section 1.3 showed that the breakdown field strength of air is around 

3.25 MV/m; hence even though the highest value at the tip of the 

needle is much more than the breakdown value of air we still do not 

get a breakdown at this voltage.  This is due to the needle electrode 

geometry which has a non-uniform electric field around the tip similar 
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to the one shown in Figure 1.4.  The highest value of the electric field 

is only very close to the tip and not over an extended distance hence 

even if there is a breakdown due to voltage; it is likely confined and 

does not form arcs to surrounding grounded objects.  Figure 4.16 de-

picts the in vitro situation with all the nine needles.  For in vitro ex-

periments the corona ion generator is lowered to the top of the culture 

dish and simulation in COMSOL estimated the values of the electric 

field that the cells would be exposed to. 

 
Figure 4.15: Simulation of electric field values around one 

needle for an applied voltage of 7 kV using 
Maxwell 2D. 
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Figure 4.16: Simulation of electric field val-
ues with the nine needle corona 
generator using COMSOL. 

 

4.1.2  Effect of Liquid Volume on Charge Collected 

It was clear from the results obtained in Figure 4.2 above that 

the distance between the corona generator and the charge collecting 

plate had a very strong influence on the quantity of charge collected.  

Planned experiments for this study included depositing corona charge 

on the surface of media and measuring the charge collected with the 

stainless steel plate at the bottom of a culture dish covered in an iso-

tonic solution such as PBS or growth media.  In this situation, the ef-

fects of corona charge would need to traverse some air space and 

some liquid before reaching the charge collecting plate located at the 
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bottom of the dish.  This is in contrast to all of the corona charge 

characterization experiments performed above where the only media 

between the charge collecting plate and the corona generator was air.  

It was envisioned that the presence of liquid media in the planned ex-

periments involving cultured cells would influence the amount of cur-

rent detected on the cell growth surface of the culture dishes.  It was 

also envisioned that the height of liquid in the dishes would influence 

the quantity of corona charge collected.  Therefore experiments were 

designed to determine the effect of liquid volume on the charge col-

lected. 

 

Figure 4.17: a) Stainless steel plate fixed at the bottom of the 
culture dish to measure the charge collected b) 
media was added on top of the charge collecting 
plate shown in a), the corona generator was low-
ered and charge collected measured. 

 

A small stainless steel charge colleting plate fixed to the bottom 

of the central culture dish, shown in Figure 4.17, that the cells were 

Connection to electrometer 

Charge collecting plate fixed to 
the bottom of the dish 
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normally grown on for in vitro experiments.  However, no cells were 

used in this experiment.  Different volumes (250, 500, 750 and 1000 

ǋl) of phosphate buffered saline were added to the central well of the 

dish.  The corona generator was positioned on top of the dish and the 

charge generated was measured for these different volumes.  A small 

hole was made in the bottom of the dish to facilitate connection to the 

stainless steel plate.  A simple copper wire was used to make this con-

nection and the other end of the wire was connected to the electrome-

ter shown in Figure 4.8 to measure the charge collected.  The results 

indicated that the charge collected increased linearly as the liquid vol-

ume was increased as shown in Figure 4.18.  For example with a liquid 

volume of 250 ǋl the charge collected was 41 ǋA, while a liquid volume 

of 500 ǋl measured approximately 75 ǋA for negative polarity.  These 

experiments were carried out at 4 kV.   
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Figure 4.18: Charge collected (ǋA) as a function of 
liquid volume.  A voltage of 4 kV was 
applied for both polarities. 

 

Applying voltages above 5 kV and liquid volume above 750 ǋl re-

sulted in a spark to the liquid.  Since voltages higher than 6 kV would 

be used for experiments 750 ǋl was chosen as an upper limit.  Vol-

umes below 250 ǋl for any applied voltage and an exposure time of 

ten minutes resulted in a dry spot in the center of the dish.  Hence, 

250 ǋl was chosen as the lower limit.  An experiment was also per-

formed to check whether using different liquids had any effect on the 

charge collected.  Cell growth media, phosphate buffered saline, saline 

and DI water were used to test the amount of charge collected.  Data 

indicated that the type of liquid had no effect on the charge collected.  

Hence for 250 ǋl, of any kind of liquid used, the charge collecting plate 

Negative Corona 

Positive Corona 
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measured exactly the same amount of charge.  For a liquid volume of 

250 ǋl and positive applied polarity, the charge collected was 10 ǋA, 

for 500 ǋl it was 18 ǋA and so on.   

4.2  Specific Aim 2: To Test the Capability of Corona Ions for Deliver-
ing Dyes and Tracer Molecules In Vitro  

Molecular delivery experiments were carried out with tracer 

molecules in this specific aim to test if corona ions could indeed be 

used as a novel method to facilitate molecular delivery in vitro.  Cal-

cein was first used to test molecular delivery with the commercially 

available two wire corona generator.  Characterization of the corona 

ion generators in the previous aim demonstrated the effect of liquid 

volume in the culture dishes on the charge collected by a metal plate 

fixed at the bottom of the dishes.  A part of the experimental work in 

Specific Aim 2 was to determine if liquid volume had any effect on mo-

lecular delivery.  After determining an appropriate liquid volume, the 

nucleic acid probe SYTOX-green was used as tracer molecules to ex-

amine the effects of corona ion deposition on molecular delivery.  None 

of these tracer molecules transit the cell membrane and gain access to 

cytosol on their own.  The materials and methods used to perform 

these experiments were described in Chapter 3.   

Calcein delivery experiments were performed using the commer-

cially available wire corona generator.  This device generated 3 µA of 
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current that was deposited on the culture surface emitted in two lines 

of charge across the culture plates.  This source was used to demon-

strate delivery of calcein to B16F10 cells.  Following the demonstrated 

success with the wire corona source, the nine needle corona genera-

tor, developed as mentioned above in Section 4.1, was implemented in 

experiments to study the delivery of SYTOX-green to cultured B16F10 

cells.  The custom made nine needle generator was better suited for 

the experiments because its circular geometry matched the shape of 

the culture dishes and it also provided two to three orders of magni-

tude higher ion density than the two wire source. 

4.2.1  Delivery of Calcein 

Figure 3.9 in Section 3.2.3 shows the experimental setup for 

treatment of cultured B16F10 cells with the commercially available co-

rona generator.  Positive corona ions were applied directly to the sur-

face of the PBS-calcein mixture that surrounded the adherent cells.  

Corona ions were deposited on the culture media for either six or ten 

minutes.  The resulting fluorometric data, shown in Figure 4.19, from 

samples that were washed and then lysed clearly indicate that the 

B16F10 cells exposed to calcein and corona charge had increased fluo-

rescence relative to cells that were exposed to calcein alone.  The six 

minute exposure time samples exhibited a three fold higher fluores-
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cence than control samples that were exposed to calcein alone.  This 

increase was statistically significant (p� 0.05, p = 0.007).  Ten min-

utes of corona exposure produced a response five fold higher than 

control samples.  These samples exhibited a mean increase that was 

also significant (p� 0.05, p = 0.001) relative to control. 
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Figure 4.19: Fluorometric data for positive corona 
ion mediated delivery of calcein to 
B16F10 cells in vitro, expressed in arbi-
trary units (A.U.).  Each bar represents 
the mean fluorescence ± s.e.m.  Each 
bar also represents data from triplicate 
experiments with three identically 
treated samples per treatment condi-
tion for each experiment. 
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4.2.2  Effect of Liquid Volume on Molecular Delivery 

Delivery experiments performed previously with calcein in sec-

tion 4.2.1 used a liquid volume of 250 µl.  Since the end goal of these 

experiments was molecular delivery, an experiment was designed to 

determine the effect that the liquid volume on molecular delivery.  The 

liquid volume was varied from 250 µl to 1000 µl.  The nucleic acid 

probe SYTOX-green was used as a tracer molecule.  The protocol fol-

lowed was the same as described in section 3.2.3.  Analysis consisted 

of measuring the fluorescence, in A.U., for the different treatment 

groups.   

Each treatment group for a particular liquid volume was com-

pared to its control and the difference in fluorescence intensity was 

noted.  For example the corona treated group with 250 ǋl of liquid vol-

ume during treatment was compared with 250 ǋl control and the dif-

ference in fluorescence between the two noted.  Three such experi-

ments were performed with triplicate samples in each treatment condi-

tion.  The difference between the controls and their respective treat-

ment groups for a particular liquid volume is plotted in Figure 4.20.  

An expected curve is also shown along with the actual experimental 

curve.  Previous results had indicated that the charge collected in-

creased as the liquid volume in the dish was increased, hence this ex-

pected curve represented fluorescence increase if molecular delivery 
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were directly proportional to the charge generated.  Results from Fig-

ure 4.20 clearly indicate that delivery is independent of the liquid vol-

ume.  A liquid volume of 250 ǋl covering the cells while being exposed 

to corona ions was chosen for further in vitro experiments.  A liquid 

volume of 250 ǋl would also maximize the distance of the cells from 

the ion generating electrode without compromising on molecular deliv-

ery. 
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Figure 4.20: Fluorescence (A.U.) of B16F10 cells 
treated with corona charge to deliver 
SYTOX-green using different liquid vol-
umes. 
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4.2.3  Delivery of SYTOX-Green 

Following results from the delivery of calcein (Figure 4.19) which 

clearly indicated fluorescence increase after corona ion exposure, an 

exposure time of ten minutes was chosen.  Negative corona ion expo-

sure was also included in this treatment protocol to see if it could also 

affect molecular delivery.  To better match the geometry of circular 

dishes the new nine needle corona generator was used which gener-

ated more charge.  The characterized nine needle corona generator 

was used to deliver SYTOX-green to cultured B16F10 cells.   
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Figure 4.21: Positive and negative corona ion mediated de-
livery of SYTOX-green to B16F10 cells in vitro.  
Mean data ± the s.e.m. for each treatment 
condition is expressed in arbitrary units (A.U.).  
Each mean is the combined data from six iden-
tical experiments.  Three samples were treated 
for each set of conditions in each of the six ex-
periments. 



 

90 

Fluorometric data for the molecular delivery of SYTOX-green is 

shown in Figure 4.21.  Samples that received exposure to both corona 

ions and SYTOX-green were about two fold higher than the control 

samples that were exposed only to SYTOX-green.  This data indicated 

that treatment with either positive or negative corona ions resulted in 

about the same increase in delivered SYTOX-green. The difference in 

means between the control and the positive and negative treatment 

groups were both significant (p= 0.003 and 0.00001, respectively). 

Microscopic observations were made on all samples prior to per-

forming the fluorometric assays.  An interesting and important obser-

vation was that dye uptake occurred only in the central area of the 

dishes.  The total area available for cell growth was 225 mm2, while 

the treatment was effective only in an area of approximately 95 mm2 

in the center.   This central region was equivalent to 40% of the total 

growth area and corresponded to the circular arrangement of needles 

in the corona generator.  This observation could also be due the fact 

that the intensity of the ions was highest over the center of the dish as 

is typically observed with ions emanating from this kind of a needle 

source [59].   
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Figure 4.22: SYTOX-green delivered to cultured B16F10 cells 15 
minutes after treatment with positive corona 
charge.  a) Control cells treated with SYTOX-green 
(250X) alone b) cells treated with positive corona 
ions for 10 minutes followed by exposure to 1 µM 
SYTOX-green (250X) c) fluorescent and d) white 
light views of b) at higher magnification (400X).  
Images b) – d) were taken from the central region 
of the culture dishes where delivery occurred.  
Similar observations were made for samples 
treated with negative corona charge (not shown). 

 

Dye uptake was typically observed in 40-50% of the cells in the 

central area of the corresponding to 95 mm2.  Delivery was also inho-
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mogeneous when either positive or negative corona charge was used 

for delivery based upon the observed weak fluorescence of some cells 

and the very bright fluorescence of other cells.  Another observation 

was that partial detachment of a fraction of the cells occurred within 

the treated 95 mm2 area.  These cells reattached back to the culture 

dish in about thirty minutes and continued to grow normally in sup-

plemented growth media.   

Fluorescent cells were rare in samples that were exposed only to 

SYTOX-green, as seen in Figure 4.22 a) and likely correspond to the 

small fraction of cells with compromised membranes.  However, cells 

exhibiting high levels of green fluorescence were quite common in cul-

tures that were exposed to corona ions and then to SYTOX-green as 

seen in Figures 4.22 b), c) & d).  These qualitative observations sup-

port the fluorometric data shown in Figure 4.21 and suggest that co-

rona ions of both polarities may be used to facilitate the introduction of 

non-permeant molecules to the cytosol of living cells. 
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4.2.4  Viability After Corona Charge Treatment   

Cell viability was assessed by the trypan blue test following ei-

ther positive or negative corona ion treatment for ten minutes.  Cells 

with compromised or damaged membranes appear blue as a result of 

this test and healthy cells absorb no color.  Cells were assessed at 

three time intervals (30 minutes, 6 and 12 hours) following corona ion 

exposure to determine if there were any immediate adverse effects.  

Control samples that were not exposed to corona charge were as-

sessed at the same times.  Viability was determined by this test to 

range from 96-99% in the control samples and 96-99% for positive 

corona treatment at the same three times.  Negative corona treatment 

resulted in viabilities that ranged from 96-98%.  There did not appear 

to be a pattern with respect to time for positive corona, negative co-

rona, or no treatment.  This indicated that corona charge exposure for 

ten minutes did not affect the short term viability of cells.  In addition, 

cultures treated with either positive or negative corona charge were 

visually indistinguishable, as demonstrated in Figure 4.23, from the no 

treatment samples at any time point with respect to confluence, or cell 

growth. 

 



 

94 

  

  

  

Figure 4.23: Viability of B16 cells treated with 10 minutes positive 
corona charge and untreated control samples.  All 
cultures contained trypan blue.  Panels a), c) and e) 
show representative fields of view for positive corona 
treated cells at 30 minutes, 6 and 12 hours after 
treatment, respectively.  Panels b), d) and f) show 
untreated control B16F10 cultures analyzed at the 
same time points. 
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These studies demonstrated that corona ions deposited on the 

surface of media containing cultured cells facilitate the transport of 

non-permeant molecules to the interior of the cells.  Calcein delivery 

using positive ions to drive the process resulted in statistically signifi-

cant increases in florescence relative to controls.  However, there was 

still a possibility that some of the tracer molecules were nonspecifically 

bound to the membrane and not in the cytoplasm even after washing.  

To address this uncertainty, work was performed with SYTOX-green as 

a tracer molecule.  As mentioned earlier, this molecule exhibits fluo-

rescence only after it has bound to nucleic acids which are located in-

side the cells.  The statistically significant results obtained in these ex-

periments are offered as conclusive evidence that the SYTOX-green 

molecules were delivered to the cell interiors using the application of 

either positive or negative ions to the culture media.

4.3  Specific Aim 3: To Investigate the Use of Corona Ions for Deliver-
ing Bleomycin In Vitro and to Established Tumors in an Animal 
Model 

After successfully delivering dyes and tracer molecules in vitro, 

the experimental focus was shifted to the delivery of the drug bleomy-

cin.  The drug was delivered to cultured B16F10 cells in vitro and to 

solid tumors induced in the left flanks of female C57Bl/6 mice.  Both 

types of experiments utilized the nine needle corona generator with 

0.35 mm diameter needles. 
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4.3.1  Delivery of Bleomycin In Vitro 

Bleomycin causes double and single stranded DNA nicks which 

ultimately results in cell death.  Therefore, access to the cell interior is 

necessary for the drug to be cytotoxic.  The drug bleomycin also does 

not penetrate cells with intact membranes [80] and this characteristic 

makes it an excellent drug for developing delivery methods because 

cell death is an indicator of delivery to the cell interior.  Corona ions 

were deposited onto the surface of liquid in a culture dish that con-

tained B16F10 cells in 250 µl of 1 x 10-5 M bleomycin in phosphate 

buffered saline solution.  Deposition of corona ions on the medium was 

carried out for two, five or ten minutes.  The results from MTT assays 

for either positive or negative corona exposure are shown in Figure 

4.24 as percent survival forty eight hours after delivery.  The no 

treatment group that had cells only was used forced to 100% survival.  

Results from test samples were normalized to this reference value.   

The data indicate that positive corona ion exposure alone re-

sulted in a modest decrease in survival; approximately 92% of the 

cells survived.  Optimized electroporation protocols typically use elec-

trical conditions that result in 90% survival; therefore, survival from 

corona exposure alone was very similar.  Survival from bleomycin ex-

posure alone did not differ significantly from the corona exposure only 

or no treatment.   
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Figure 4.24: MTT survival data for the in vitro delivery in-
vestigation including either positive or nega-
tive corona ion mediated delivery of bleomy-
cin to B16F10 cells. Each solid bar repre-
sents the mean survival percentage ± s.e.m 
(n = 9 samples per bar). 

 

However samples that were exposed to bleomycin and then ex-

posed to positive corona charge for ten minutes had about 60% sur-

vival. These differences were significant (p � 0.05) with the samples 

that received corona exposure alone, bleomycin alone, or no treat-

ment.  The two minute and five minute positive corona exposure 

groups were not significantly different from any of the treatment con-

ditions used as controls. 
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The results of the negative corona exposure were similar to that 

of the positive corona.  The negative corona exposure alone resulted in 

a decrease of 13% while the bleomycin treatment alone led to a de-

crease of 10%; both were not significantly different from the no 

treatment control.  In samples exposed to bleomycin and five minutes 

of negative corona, 60% of the cells survived.  Similarly, 55% survival 

resulted from exposure to ten minutes of negative corona and bleomy-

cin.  Both these cases were significantly different (p � 0.05) from the 

corona exposure only, bleomycin only and no treatment.  The two 

minute corona exposure samples were not significantly different from 

the controls.  

Microscopic observation made for both the positive and negative 

corona charge treated cells 48 hours after bleomycin delivery revealed 

that most of the cell death (or absence of growth) was in the center of 

the dish.  In fact, the area of effected cells was a circle approximately 

95 mm2 area in the center of the dish.  For the samples treated with 

bleomycin followed by ten minutes of corona charge (positive and 

negative) this region was largely void of cells.  A similar area was ob-

served above, resulting from in vitro SYTOX-green delivery experi-

ments.  Each culture dish had a total area of 225 mm2 available for cell 

growth and failure to achieve molecular delivery throughout the entire 

growth surface could be due to the inverted cone shape [59] of the co-
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rona fields that are emitted from point sources such as the needles of 

the generator.  Analysis of the treated area showed that the net result 

of this survival data in Figure 4.24 was obtained while treating only 

about 37% of the growth area that was seeded with cells.  Survival 

rates resulting from delivered bleomycin would have undoubtedly been 

much lower if the entire cell growth surface was treated.   This survival 

data strongly suggests that the chemotherapeutic drug bleomycin can 

be delivered to cells in vitro using corona ions as a driving force. 

4.3.2  Delivery of Bleomycin In Vivo 

No treatment protocols existed for treatment of cancerous tissue 

in vivo using corona ions.  Hence either an intelligent guess or in vitro 

results had to be used as basis for choosing a treatment protocol.  

During in vitro treatment, the cells were grown on the surface of insu-

lating culture dishes and the ions were deposited on the surface of the 

media surrounding them.  In that particular instance charge would be 

contained by the walls of the dish, however charge would probably dis-

tribute over a much larger area when treating mice as there was no 

insulating material around the tumors.  Based upon this difference the 

ten minute corona charge exposure time used for the in vitro experi-

ments was increased to 20 minutes for in vivo experiments.  Figures 

4.25 and 4.26 show the anti-tumor effect resulting from delivering 
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bleomycin to established B16F10 tumors for a single treatment and 

treatment on the three successive days at the beginning of the ex-

periment. 
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Figure 4.25: Mean normalized tumor volumes post 
treatment as specified in Table 3.1 for a 
single treatment with bleomycin and ei-
ther positive or negative corona ions for 
20 minutes.  Each data point represents 
a mean normalized tumor volume ± 
s.e.m. (n = 7 animals per group).   

 

The single treatment data in Figure 4.25 clearly shows that the 

treatment groups that received both bleomycin and corona treatment 

had the lowest mean tumor volumes over time.  The results for deliv-

ery with negative corona ions were very similar to the results obtained 
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with positive corona ion exposure.  Thus, delivery with corona ions of 

both polarities was successful in slowing down the rate of tumor 

growth, compared to the no treatment group and the group that re-

ceived drug alone.  However, none of the animals in the two groups 

that had bleomycin delivered achieved complete responses (complete 

destruction or regression of the tumor).  It was hypothesized that mul-

tiple treatments might improve upon this response. 

The anti-tumor effects resulting from a series of three treat-

ments on days 0, 1 and 2 are shown in Figure 4.26.  The mean tumor 

volume profiles indicated that there was a significant difference (p < 

0.05) between the group that received exposure to both bleomycin 

and positive corona for three successive days and the no treatment 

(control) group on all days post treatment. Also there were significant 

differences between the group exposed to the drug alone and that ex-

posed to both drug and positive corona on all days post treatment.  

Results for negative corona exposure were similar to that of positive 

corona, with significant differences between no treatment control and 

the group that received exposure to both the drug and negative corona 

ions on three successive days.  The treatment groups that were ex-

posed to the drug alone and those that were exposed to both the drug 

and negative ions were also significantly different on all days post 

treatment. 
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An important observation was that by day 11 all animals in the 

groups that received no treatment, positive corona treatment only and 

negative corona treatment only had to be euthanized as their tumor 

volumes had reached the 1000 mm3 threshold.  None of the animals in 

the treatment groups that received ion exposures of either kind and 

bleomycin and the group that received the drug alone had to be 

euthanatized by day 11.  However, by day 14, 60% of the animals in 

the bleomycin only group had to be excluded from the study as their 

tumors were greater than 1000 mm3.  No animals were excluded from 

the groups that received exposure to either kind of ions and drug until 

day 24 (complete data not shown).  Comparison of results from both 

Figures 4.25 and 4.26 show that by day ten the groups that received 

exposure to both bleomycin and one time 20 minute of corona expo-

sure had an increase of about 1700% over their day zero tumor vol-

ume, whereas the treatment with drug and corona ions on three suc-

cessive days the increase in tumor volume was only around 1200% by 

day 14.  Even though the three successive day treatment was better in 

terms of slowing down the growth rate of the tumors as compared to 

the one time treatment, complete responses (complete tumor destruc-

tion) were not achieved.   
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Figure 4.26: Mean normalized tumor volumes post 

treatment as described in Table 3.1 for 
three day treatments with bleomycin 
and either positive or negative corona 
ions for 20 minutes.  Treatments were 
administered on three successive days 
(0, 1 and 2).  Each data point repre-
sents a mean normalized tumor volume 
± s.e.m. (n = 7 animals per group).   

 

One conclusion could be that a 20 minute delivery procedure on 

three successive days affected only the topmost layer of the tumor 

closest to the corona ion source.  Viable tumor cells at the base of the 

tumors might continue to grow in this circumstance.  Nevertheless, 

slowing down the growth rate of this very aggressive skin tumor with 

the combined use of a drug and corona charge can be considered very 

significant.  B16F10 tumors are considered to be poorly immunogenic 
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and mice that develop them find it difficult to trigger an adequate im-

mune response to destroy them [86].  This is attributed to the lack of 

expression of MHC class I and II molecules and its tumor associated 

antigens [87, 88].  B16F10 tumors once developed are very difficult to 

treat and any kind of therapeutic effect that results in slowing down 

the growth rate of this kind of tumor can be considered highly positive.  

Another unique feature of this treatment method was that tumor 

growth rates were slowed without contact with the animal model.  Vis-

ual observations made on animals in the corona ion treated groups did 

not reveal any tissue damage or burn or involuntary muscle stimula-

tion. 

4.4  Specific Aim 4: To Evaluate the Use of Corona Ions for Delivering 
Plasmid DNA to Cells in the Skin of a Murine Model 

In this study, corona ions had been investigated as a novel forc-

ing function for molecular delivery to cells in culture using dyes/tracers 

and bleomycin.  In addition, they were used to deliver bleomycin to 

solid tumors in C57Bl/6 mice.  To complete the investigation of the 

utility of corona ions, delivery of plasmid DNA to cells in the skin was 

investigated.  Skin was used as a normal tissue model because it is 

easily accessible.  100 µg (50 µl at a concentration of 2 mg/ml) of re-

porter plasmid coding for the enzyme luciferase was injected intrader-

mally into the shaved left flanks of the mice and corona charge was 
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applied with the nine needle generator.  Details of the treatment were 

shown in Table 3.2.  The procedure for post-treatment analysis 

included injecting all the mice intraperitonealy with luciferin and then 

imaging the resulting bioluminescence using an IVIS 200 imaging 

system (Xenogen, Hopkinton, MA).   
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Figure 4.27: Results of in vivo data analysis for positive co-
rona ion exposure.  The mean photon fluxes in 
photons/sec/cm2 for each group on a particular 
day post treatment were compared to check for 
differences at 95% significance level. Results 
indicate that the group that received treatment 
with both plasmid and positive corona ions for 
30 minutes had an average of 5-fold increase in 
the 10 day period that it was it was significantly 
higher than the plasmid only group. The group 
with a counter electrode had a 7-fold increase 
only on day 2. Each data point represents a 
mean photon flux in photons/sec/cm2 ± s.e.m. 
(n = 12).   

 

The images were then analyzed to determine an average photon 

flux (photons/sec./cm2) in a region of interest (entire treated area).  

Figures 4.27 and 4.28 show the mean photon flux measured periodi-

cally over the 25 day follow up period for positive and negative corona 
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ion exposure, respectively.  A total of 12 animals were treated in each 

group.   
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Figure 4.28: Results of in vivo data analysis for negative 

corona ion exposure.  The mean photon 
fluxes in photons/sec/cm2 for each group on a 
particular day post treatment were compared 
to check for differences at 95% significance 
level.  Results indicate that the group that re-
ceived plasmid injection followed by 10 min-
utes of negative corona was significantly 
higher than the group that received the plas-
mid only with an average of 6-8 fold increase 
during the time period it was significantly 
higher.  None of the other treatment groups 
were significantly different with the plasmid 
only group. Each data point represents a 
mean photon flux in photons/sec/cm2 ± 
s.e.m. (n = 12).   
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Results of positive corona ion exposure, Figure 4.27, show that 

the group that received plasmid and 30 minutes of positive corona ion 

exposure was significantly higher than the group the received plasmid 

only until the 16th day at a 95% level of significance (for p � 0.05).  

The level of expression in this group corresponded to about ten fold 

higher expression on day two relative to the group that received a 

plasmid injection only.  The expression reached a minimum of two fold 

on day six after which it peaked again to about five fold on day 12.  

The expression fell to about two fold again on day 16 after which it 

was not significantly different from the other groups.  The other group 

that had expression levels that were significantly higher than the 

plasmid only group was the group that had a counter electrode in-

serted subcutaneously below the spot of plasmid injection. This group 

had a grounded electrode inserted subcutaneously below the site of 

plasmid injection and then received exposure with positive corona ions 

for ten minutes after plasmid injection.  The increase over the controls 

was about seven fold on day two the only day that it was significantly 

higher than the controls.    

Expression results for negative corona ion exposure, Figure 4.28, 

indicated that only the group that had plasmid followed with ten min-

utes of negative ion exposure had luciferase levels that were signifi-

cantly higher (for p � 0.05) than the plasmid only group.  The in-
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tradermal injection of plasmid followed by ten minute exposure to 

negative corona ions resulted in a 14-fold increase on day two over the 

plasmid only group which was the peak.  These two groups were sig-

nificantly different until the 16th day with the values peaking at day 

two, falling to a minimum of about four fold on day eight and again ris-

ing to about seven fold until day 16.  All these differences were signifi-

cant at a 95% level of significance.   Figure 4.29 shows representative 

images of the plasmid only group and groups with plasmid injection 

followed by 30 minutes of positive corona and the plasmid injection 

followed by ten minutes of negative corona ions on days 0, 2, 4, 8, 16 

and 25 post-treatment. 
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Figure 4.29: Images of mice from the three different groups 
that were statistically different in the amount of 
luciferase expressed.  The luciferase expressed is 
measured in terms of a photon flux in 
photons/sec/cm2.  The figure shows pictures of 
three Groups A) plasmid injection only B) plasmid 
injection followed by 30 minutes of positive 
corona and C) plasmid injection followed by 10 
minutes of negative corona on days post 
treatment.  Images taken on days 0, 2, 4,8,16 
and 25 are shown. 

Group A  Group B Group C  
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4.5  Specific Aim 5: To Investigate the Mechanism of Interaction of Co-
rona Ions with Biological Cells 

Experimental results from Specific Aims 2, 3 and 4 demonstrated 

that corona ions could be used to deliver tracer molecules, drugs and 

genes to biological cells and that these cells close and remain viable 

following treatment.  Therefore, it may be stated that the exposure to 

corona ions, of both polarities, somehow renders the cell membrane 

temporarily permeant to extracellular molecules.  The main goal of this 

specific aim was to try to understand the mechanism involved in the 

permeabilization process induced by corona charge.  B16F10 and 

fibroblast cells were used for these in vitro studies.  The study was 

partitioned into three sections.  The first section addressed the 

interaction of these deposited corona ions with the media.  The next 

section addressed how this interaction with the media affected the 

cells to allow the passage of impermeable molecules to the cytosol.  

Finally rate of uptake of the dye SYTOX-green was monitored for 35 

minutes and a preliminary model for the resealing time constant of 

B16F10 cells exposed to corona ions was developed. 

4.5.1  Interaction of Deposited Corona Ions with the Media In Vitro 

An attempt was made to shed some light on the interaction of 

positive and negative corona ions with media surrounding the cells.  

Fluorescence from SYTOX-green binding was used as an indicator for 
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molecular delivery and microscopic observations were performed on 

corona treated samples.  Experimental observations made on samples 

treated with corona ions showed delivery of SYTOX-green in the cen-

tral area of the culture dish.  The growth area of the central culture 

dish shown in Figure 4.30 where cells were grown was about 225 mm2 

whereas molecular delivery was observed only in the center of this 

growth area corresponding to 95 mm2.  Based upon experimental ob-

servations in vitro, uptake of SYTOX-green (Section 3.2.3) was inho-

mogeneous in the central area of the culture well corresponding to 95 

mm2 and delivery was observed in 40-50% of the cells in this area.   

Another important observation was that delivery of SYTOX-green 

was observed about five to seven minutes after corona ion deposition 

of either kind started.  Two possible alternatives of interaction of co-

rona ions with the media are suggested here.  The high conductivity of 

the phosphate buffered saline covering the cells during treatment 

could allow the deposited corona ions to spread on the surface of the 

media and set up a polarization of the fluid extending to the outer sur-

face of the culture dish.  The cells and the media surrounding them are 

contained in an insulating polystyrene culture dish, when corona ions 

are deposited on the media surface, this situation is analogous to 

charge spreading on an isolated Gaussian surface, producing a net 

charge differential at the extremes of the media where the cultured  



 

113 

 

 

 
 
Figure 4.30: Schematic depiction of the corona 

generator, culture dish, cells, liquid and 
dye orientation during corona charge 
mediated delivery.  

 

cells are attached.  This charge might produce an electric field that has 

been suggested to drive the observed delivery similar to that observed 

when traditional electroporation is used [89-94].  Alternatively, corona 

ions could diffuse through the media and pass the cells while moving 

to the outer surface of the conductive media.  These ions could inter-

act with the cells attached to the bottom of the culture dish and induce 

delivery via a mechanism that includes charge exchange with the 

membrane.  The current induced due to the ionic charges could also be 

an alternate driving force for molecular delivery as has been suggested 

previously [95-97] in electrode simulated delivery. 

Figure 4.30 shows that, due to the shape of the liquid meniscus, 

the thickness of liquid covering the cells was minimum in this central 

area of the dish.  The corona ions that are deposited onto the surface 

of the media would have undergone approximately million collisions 

before they reach the surface of liquid and hence would have lost any 
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excess energy gained in the ionization process.  Even though the ions 

would have lost much of their excess kinetic energy during collisions, 

they would still have a significant amount of electrostatic and chemical 

energy.  The electrostatic energy would be due to the fact that they 

are ions and chemical energy would be due to the adhesion between 

an ion and polarizable water molecules around it.  Hence if they affect 

the cells by diffusing randomly through the liquid (due to this energy 

that they posses), the area in the center of the dish would present the 

least amount of liquid volume to move through for the diffusing ions to 

reach the cells.  In addition to the liquid meniscus offering the least 

amount of resistance, another reason for delivery in the central region 

of the culture dish could be due the fact that the intensity of the ions 

was highest over the center of the dish as is typically observed with 

ions emanating from this kind of a needle source [59].  Alternatively, 

this observation is consistent with the simulation results from Figure 

4.17 which show values of electric fields being highest over the center 

of the dish.  

4.5.2  Mechanism of In Vitro Delivery Based on Experimental Observa-
tions 

Irrespective of the mechanism of how corona ions interact with 

the media, either by spreading on the surface or diffusing through the 

media, corona ion deposition does facilitate the uptake of molecules 
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that are cell impermeant.  In this section various experiments were 

performed to study how the media treated with corona ions responded 

so as to affect molecular delivery.   

4.5.2.1  Temperature and pH Measurements 

A change in the microenvironment surrounding the cells was first 

anticipated due to ion deposition.  Temperature and pH measurements 

were performed to observe whether possible changes in either of these 

two parameters could be responsible for destabilizing the cell mem-

brane and effect molecular delivery.  Temperature measurements of 

the media surrounding cells that were exposed to either positive or 

negative corona ions for ten minutes indicated that corona ion expo-

sure with either polarity did not result in an increase or decrease in 

temperature in the medium close to the cells.  Temperature of both 

the controls and treated samples showed exactly the same value of 

22°C.  Hence change temperature did not appear to be a factor effect-

ing molecular delivery. 

Experiments were next performed to determine if there was a 

change in pH due to corona ion deposition.  Cells were grown in cul-

ture dishes and pH was measured using a microelectrode before and 

after exposure to corona ions of either polarity for ten minutes.  An-

other experiment was also performed where pH was monitored during 
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the corona ion deposition with chemical strips.  The pH indicator strips 

used were commercially available and commonly used in laboratory 

experiments.  Both experiments did not demonstrate any change in 

the pH of the medium due to corona ion deposition.  Mean pH of six 

control samples was 6.93 while the six corona treated samples showed 

a mean pH of around 6.87.  The results of these experiments suggest 

that changes in temperature or pH were minimal and had a remote or 

no possibility of effecting molecular delivery. 

4.5.2.2  Effect of Corona Ions on Resting Membrane Potential 

All biological cells are known to exhibit a resting membrane po-

tential.  The resting membrane potential is the steady state condition 

in which the flow of positive or negative ions across the lipid bilayer is 

balanced.  The total resting membrane potential has a value that var-

ies between -20 to -200 mV [98] depending on the cell type.  There 

are three components that contribute to this total resting membrane 

potential [99, 100], they are: surface potential, membrane dipole po-

tential and the total transmembrane potential difference.  Surface po-

tential arises from the net excess of charge present at the membrane 

aqueous interface and it is the potential difference between the mem-

brane interface and the bulk aqueous.  Membrane dipole potential 

originates from combination of the orientation of the dipolar lipid 
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groups and the permanent dipoles of water molecules at the mem-

brane water interface and the last one being the total transmembrane 

potential difference which arises due to the difference in charges in the 

bulk aqueous mediums outside and inside the cell.  Figure 4.31 shows 

a visual model of the distribution of all three potentials around the 

plasma membrane.  Equation (4.1) shows the expression for the total 

resting membrane potential MT' , with sE  and dE  being the surface and 

membrane dipole potentials respectively.  iE'  is the charge differential 

between the bulk inside and outside of the cell.  It is known from pre-

vious work that the membrane dipole potential has a positive value 

[100] and is depicted in Figure 4.31.   

Figure 4.31: Distribution of various potentials existing in a cell  
with bulk exterior being the reference. 
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(4.1)    idsM EEET '�� '  

An experiment was carried out to see the effect of corona ion 

exposure on change in total resting membrane potential of two differ-

ent cell lines.  Di-8-ANEPPS, a commercially available dye measuring 

the change in membrane dipole potential (MDP) was used.  The dye 

increases in fluorescence when there is a change in the strength and 

packing density of the lipids in the plasma membrane [81-83].  Di-8-

ANEPPS is frequently used by neuroscientists to measure the action 

potential in neurons.  Action potentials in neurons are triggered by a 

sudden depolarization of the plasma membrane and they have a re-

sponse time which is in milliseconds.  Hence Di-8-ANEPPS, a dye with 

a very fast response time was used.  Having a very fast response time, 

means that the increase in fluorescence is retained for a very short pe-

riod of time (on the order of milliseconds) and hence observations or 

quantitative measurements had to be made instantly after treatment.  

An increase in fluorescence after exposure to corona ions would indi-

cate that the packing of lipids in the bilayer has been affected and also 

that there was a change in the total resting membrane potential.  Fig-

ure 4.32 shows pictures of cells stained with Di-8-ANEPPS followed by 

exposure to positive corona ions for five minutes.  The pictures in Fig-

ure 4.32 were taken immediately after five minutes of corona expo-

sure and show control and treated samples of B16F10 and fibroblast 
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cells.  There was no visual difference between the positive or negative 

corona ion treated samples. 

 

       

      

Figure 4.32: B16F10 and fibroblast cells exposed to positive 
corona ions.  a) and d) represents B16F10 and 
fibroblast cells stained with the dye only that 
were used as controls.  b) and c) represents 
two different samples of B16F10 cells treated 
with 5 minutes of positive corona. e) and f) 
represents two different samples of fibroblasts 
exposed to 5 minutes of positive corona ions. 
Negative corona ion exposure (not shown) 
yielded similar results. 

 

Results from Figure 4.32 were quantified and are shown in Fig-

ure 4.33.  The pixel values from the images shown in Figure 4.32 were 

evaluated and the mean light intensities of pictures were recorded us-

ing Daime imaging software.  The mean intensities show that there is 

an increase of 7-12% in light intensity, which is what is commonly ob-
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served when this dye is used due to its very fast response time.  Pre-

vious studies carried by Xu and Loew have reported a 9% increase in 

fluorescence after five seconds that corresponded to a voltage change 

of 100 mV [101].  The increase in fluorescence was captured five sec-

onds after their treatment condition and it fell drastically and pla-

teaued after 30 seconds.  The data shown above indicate that expo-

sure to corona ions does affect the resting membrane potential due to 

change in packing of the lipids in the bilayer.  Studies should be car-

ried out in the future to support this initial work and estimate the val-

ues of change in total resting membrane potential due to corona ion 

exposure. 
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Figure 4.33: Mean light intensities of treated sam-
ples from Figure 4.32. 
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4.5.2.3  Effect of Corona Ions Exposure on Cell Adhesion 

This study monitored the cell adhesion characteristics during and 

after exposure with corona ions.  Experiments in section 4.5.1 had 

noted that delivery of the dye SYTOX-green started after five to seven 

minutes of corona exposure to either polarity.  Also in vitro delivery of 

the drug bleomycin had confirmed the fact that for delivery to occur 

the exposure time to corona ions had to be at least five minutes.  Ex-

periments in this section were designed to see if there was a correla-

tion between cell adhesion and delivery.  B16F10 cells were stained 

with cell permeant fluorescent dye CMFDA to make observations for 

this study.  The stained cells were gown on culture dishes as shown in 

Figure 4.30 and exposed to corona ions to see the effect on cell adhe- 

sion.   

For cells to function properly and divide they have to attach to a 

substrate which in this case is the polystyrene dish.  Cells attach to the 

substrate matrix and to each other through transmembrane proteins.  

Although there are many kinds of transmembrane proteins the two 

most important ones are called cadherins and integrins [7].  Cadherins 

are transmembrane proteins that are calcium channels formed be-

tween adjacent cells.  Integrins are transmembrane proteins that have 

receptors on the outer surface of the lipid bilayer and also a cytoplas-

mic domain.  Besides attachment to the extracellular matrix (ECM), in-
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tegrins also have functions that relate to cell motility, cell division and 

cell signaling.  Integrin receptors on the cell membrane make decisions 

on what action to take such as attachment, movement, cell death or 

differentiation based on the surrounding environment [7].  They also 

link the ECM to the intracellular actin filamentous system and are im-

portant in defining the shape of biological cells [7].  

Integrins can only bind to their substrate (or ligands in the ECM) 

when they exceed a certain minimal number at a certain spot called a 

focal contact.  No attachment occurs when the integrins are distributed 

over the surface of the cell membrane, but when triggered by a certain 

signal, integrins will cluster together at a focal point to adhere to the 

substrate.  The combined weak affinities of the integrins at the focal 

point give enough adhesive capacity for the cell to anchor on a 

substrate.  Attached B16F10 cells stained with CMFDA were exposed to 

corona ions for ten minutes and their adhesion was monitored during 

and after exposure to corona ions.  Figure 4.34 shows results of this 

experiment.   
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Figure 4.34: Images of control and corona charge treated 
samples.  a), b), c) and d) control samples imaged 
0, 5, 10 and 15 minutes.  e), f), g) and h) images 
from samples exposed to corona ions for 0, 5, 10 
and 15 minutes during positive corona ion exposure. 
Negative corona ion exposure yielded similar results 
(not shown).  

 

All the pictures were taken keeping focus of the microscope the 

same and without moving the culture dish throughout the time period 

that images were taken.  Hence both the controls and treated samples 

looked at the same set of cells in the central area of the dish during 

the complete observation time.  Images a) through d) represent 

pictures taken of cells stained with CMFDA only, whereas images e) 

through h) show images of cells stained with the dye and exposed to 

corona ions.  As shown in Figure 4.34 g) and h), after exposure to 

corona ions the cells start to round up and some partially detach from 

the substrate compared to the controls.  The cells start releasing from 

their substrate and move out of focus somewhere between five and 
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ten minutes after corona treatment started.  This corresponds to the 

time that the onset of delivery was observed in experiments performed 

with SYTOX-green and bleomycin.  In addition, there were also some 

cells that were partially detached from the culture dishes that did not 

have any dye delivered.  The exposure of corona ions could probably 

be affecting the cadherins and integrins or other kinds of membrane 

proteins in a manner as to create temporary pathways that allow 

transport of exogenous molecules that do not get in on their own.  

Future work is suggested to see what particular types of transmembr- 

ane proteins are being affected and if there is a correlation between 

cell detachment and molecular delivery. 

4.5.3  Preliminary Model for Resealing Time Constant of B16F10 Cells 

The rate of uptake of SYTOX-green was monitored for 35 

minutes and a preliminary model was developed for the resealing time 

constant of B16F10 cells exposed to corona ions.  Figures 4.35 and 

4.36 show results of the uptake of SYTOX-green beginning immedi-

ately after ten minutes of positive and negative corona ion exposure, 

respectively.  The rate of uptake was equated to the increase in fluo-

rescence after binding of SYTOX-green with DNA/RNA inside the cell.  

Figure 4.35 shows rate of uptake of the dye after ten minutes of posi-

tive corona exposure along with controls that had SYTOX-green only.  
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The controls show increase in fluorescence due to the presence of few 

dead cells in the culture.  Slopes of curves, the controls and positive 

treated become approximately same by around 20 minutes.  Slopes of 

curves in Figure 4.36 for the negative corona ion treatment showed a 

similar pattern with the curves having approximately same values of 

slopes at around 25 minutes. The figure clearly shows that the cell is 

rendered permeable to extracellular SYTOX-green after corona ion ex-

posure and it takes some time after ion exposure for uptake to cease.  

For both positive and negative corona ion exposure the rate of uptake 

ceased at approximately 20-25 minutes. 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 4.35: Rate of uptake for SYTOX-green in terms of 
fluorescence of the bound dye measured 
every 15 seconds following 10 minutes of 
positive corona ion exposure (n = 9).  
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Figure 4.36: Rate of uptake for SYTOX-green in terms 

of fluorescence of the bound dye meas-
ured every 15 seconds following 10 min-
utes of negative corona ion exposure (n = 
9).  

 

It could be concluded from this data that 20 minutes is the time 

required for permeated B16F10 cells to reseal after corona ion expo-

sure.  However, such a conclusion would be biased, as the ability to 

quantify the resealing time of a cell also depends on the size of the 

molecule being detected.  Assuming that there is some sort of rela-

tively short lived structural defect induced in the lipid bilayer structure 

by corona charge, the capacity to detect resealing can be a function of 

the size of the detector molecule because at some point before the 

membrane has completely resealed, the molecule will be too large to 
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diffuse through the defects.  The size of the molecule can hence influ-

ence the resealing time constant based on the method of detection.  

However, a model was developed to describe the observed behavior.    

SYTOX-green is an intercalating dye that binds to any kind of 

nucleic acid inside the cell and fluoresces.  This happens in two stages; 

first step is the diffusion of SYTOX-green into the permeated cell 

membrane and second is the attachment of dye to a binding site on 

DNA or RNA resulting in a strongly fluorescent complex.  It is assumed 

that during the time when the cells start to reseal the permeability of 

the cells to SYTOX-green (µ in m/s) reduces exponentially with time 

[102].  Assumption of exponential reduction in permeability is based 

on previous work done to develop a model for reduction in size of 

pores formed after exposure to electric fields. 

(4.2)   )/exp(1 7� toPP  

Equation (4.2) represents the average effective permeability of 

SYTOX-green inside B16F10 cells through the complete surface area of 

the cell membrane, where µ0 is the initial permeability or permeability 

at time zero which is the moment that the corona ion exposure ceases.  

The other variables are time (t) in seconds and the resealing time con-

stant (T) also in units of seconds.  An equation showing the flux of a 
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molecule across the permeated cell membrane is proportional to its 

concentration gradient and is given by  

(4.3)   )()(
io
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o
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S CC

x
D

dtS
VCdJ �  
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where, iD  is the effective diffusivity, I  is the partition coefficient of 

the cell membrane and x  is the membrane thickness.  iC and oC  are 

the intracellular and extracellular concentrations of SYTOX-green 

(moles/m3), oS and oV are the cell surface area and cell volume respec-

tively.  The combined terms,
x
DiI  may be substituted by the effective 

permeability from equation (4.2) to obtain 
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and with rearrangement we have 
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where, oS and oV are assumed to be constants in this computation.  Inte-

grating both sides of equation (4.5) yields the following time depend-

ant expression in equation (4.6).  This equation gives the expression 

for the concentration of free SYTOX-green inside the cell membrane 
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during the resealing process after corona ion exposure.  See appendix 

A for more details on deriving equation (4.7) from equation (4.5). 
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Now equilibrium is assumed when SYTOX-green binds weakly to 

an intracellular nucleic acid to form a fluorescent complex, i.e. equilib-

rium is assumed for the binding and dissociation of this complex [103-

104].  If SY represents SYTOX-green and BNU  represents a binding 

site then the equilibrium expression can be given by 

(4.9a)   BB NUSYNUSY �l� .  

The equilibrium constant in terms of the concentration of bound SY-

TOX-green is 

(4.9b)   
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where EK  is the equilibrium constant of SYTOX-green binding to nu-

cleic acids inside the cell (m3/mol), bSY is the amount of SYTOX-green 

bound to nucleic acid per cell, oN (mol/cell)is the total number of bind-

ing sites in a single cell and BNU  is the intracellular binding site for 

SYTOX-green.  )( bo SYN � represents number of unbound sites available.  

Rearranging equation (4.9b) gives  

(4.10)   
Ei

ioE
b KC

CNKSY
�

 
1

. 

Substituting (4.8) in (4.10) gives an expression for the total time de-

pendant concentration of SYTOX- green that diffused though the 

plasma membrane and was subsequently bound to nucleic acids after 

corona ion exposure  

(4.11)  
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This expression can be used in future studies to fit the data from 

Figures 4.35 and 4.36 and estimate the resealing time constant.  To 

estimate the time constant and the permeability, the equilibrium con-

stant for the cell binding EK  and oN  the total number of binding sites 

in a cell would need to be determined based upon experimental data 

or upon calculations.  In the absence of values for these parameters, 

the model equation (4.11) was used to determine if the shape of the 
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curve generated would fit the experimental data obtained with SYTOX-

green.   
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Figure 4.37: Model curve generated with equation 
(4.11) and a low value for permeability.  
The model curve is shown along with 
the experimental data of SYTOX-green 
uptake obtained in Figures 4.35 and 
4.36. 
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Figure 4.38: Model curve generated with equation 

(4.11) and a high value for permeabil-
ity.  The model curve is shown along 
with the experimental data of SYTOX-
green uptake obtained in Figures 4.35 
and 4.36.  

 
Values for EK , oN and oP (the permeability) were chosen to gener-

ate several curves.  A series of values for these variables were used in 

the model equation (4.11).  Figures 4.37 and 4.38 show the results of 

2 such curves generated.  It was noted that any value chosen for EK  

and oN  did not have any effect on the overall shape of the curve, for 

example the values of EK  were changed by an order of 106 and the 

shape of the curve was not effected.  The number of binding sites were 

also modified by an order of a million and found to have no effect on 
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the shape of the curve either.  Values of all constants chosen for gen-

erating the model curves are given in Appendix B.  The only parameter 

that had any effect on the shape of the curve was the permeability and 

Figures 4.37 and 4.38 show the effect of low and high values of per-

meability chosen, respectively.  In the absence of accepted values 

from the literature, permeability values of 0.05 and 50
sec
mP

 were used 
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Figure 4.39: Model curve generated with equation 
(4.11) and a intermediate value for 
permeability.  The model curve is 
shown along with the experimental data 
of SYTOX-green uptake obtained in Fig-
ures 4.35 and 4.36. 
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in the model to generate the model curves in Figures 4.37 and 4.38.  

The values for permeability used here were estimated from the litera-

ture from values for diffusion coefficients of the dye SERVA Blue G 

[105] inside electroporated cells.  Figure 4.39 shows data with a value 

of permeability chosen in between the low and high values chosen in 

the previous two figures so as to better fit the experimental data ob-

tained from Figures 4.35 and 4.36.  The experimental results contain a 

small number of dead cells that take up SYTOX-green and the model 

does not account for dead cells, thus the model generated curves were 

shifted upwards to cross the y axis at about the same point as the ex-

perimental curves.  Results from the model generated curves, indicate 

that the model can appropriately describe the experimental results.   
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5  CONCLUSIONS 

 

5.1  Introduction 

The hypothesis of this research was that corona ions can be ap-

plied to living systems to deliver drugs and DNA in cell culture and in 

tissues.  The motivation for examining this hypothesis was to progress 

toward developing a novel physical method for delivering molecules to 

cells in vivo that would not suffer from the known effects of electropo-

ration and would avoid all the drawbacks associated with electrode 

simulated delivery of drugs and genes.  A reproducible system that 

generated corona charge, at atmospheric temperature and pressure 

was developed and applied to living systems.  Successful application of 

these charged particles to deliver molecules to cells in vitro, estab-

lished tumors in vivo and to cells in skin of mice proved the hypothe-

sis.  Specific conclusions from the experimental work are described be-

low. 

5.2  In Vitro Delivery 

Molecular delivery using corona ions was first tested in B16F10 

murine melanoma cells with two tracer molecules, calcein and SYTOX-
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green.  Following delivery of tracer molecules, delivery of the drug be-

lomycin to B16F10 cells in vitro was established.  It was noted that to 

affect molecular delivery in vitro, a minimum exposure time of five 

minutes with corona ions of either polarity was required.  Molecular 

delivery was observed in vitro only after about five to seven minutes of 

exposure to either positive or negative corona ions.  Short term and 

long term viability of cells exposed to corona ions was also investi-

gated leading to the conclusion that neither short term nor long term 

viability was affected by corona ion exposure of either polarity.   

A unique aspect of the method presented in this study in vitro is 

that the cells are contained in conductive media and are attached to an 

insulated culture dish when the corona ions are deposited, yet they 

exhibit delivery analogous to direct stimulation with electrodes.  One 

explanation for this could be that applied charges are transported by 

the media to the outer surface of the culture dish in a manner analo-

gous to charge spreading on an isolated Gaussian surface.  The net 

charge differential produced could create an electric field at the ex-

tremes of the media where the cultured cells are attached to the sur-

faces of the dish.  Initially this seemed unlikely based upon the in vitro 

results, as molecular delivery started only after five to seven minutes 

of ion exposure.  As the charges are generated and deposited on the 

surface, there is a continuous process when charges are neutralized 
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and deposited, hence the time interval of about five to seven minutes 

that it takes for delivery to start could be the time it takes for the 

charges to attain a steady state between charge neutralization and 

charge deposition.  Hence this possibility cannot be completely ruled 

out. 

A second possible mechanism of interaction of deposited corona 

ions with the cells could be due to diffusion through the liquid covering 

the cells and interaction due to charge exchange.  Delivery of SYTOX-

green and cell death due to delivered bleomycin in vitro occurred in 

the central region of the culture dish and not uniformly over the entire 

growth surface.  This 95 mm2 delivery area, was closest to the corona 

generating needles and about the same diameter as their circular ar-

rangement, e.g., corresponding to the region of highest applied ion 

density to the surface of the media containing the cells.  The absence 

of an effect distant from the needles suggests that charge exchange 

occurs only in close proximity to the charge source as it will have to 

diffuse though least amount of liquid in the center of the dish due to 

the shape of the liquid meniscus.  In this case it appears that the dis-

tance between the corona ion concentration applied to the media sur-

face and the target cells could be a dominant factor for delivery. 
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5.3  Delivery to Solid Tumors 

Delivery of the drug bleomycin to solid tumors as a single treat-

ment and three day series of treatments were successful in slowing 

down the rate of tumor growth.  Considering the aggressive nature of 

these tumors the 21 day response that was achieved can be consid-

ered highly positive.  This result also supported the hypothesis as 

bleomycin does not penetrate cell membranes well without assistance; 

therefore, decreases in growth rates can be attributed to corona medi-

ated delivery of bleomycin.  A possible explanation for achieving re-

duced growth rates and not complete tumor destruction is based upon 

the fact that the electric field emanating from the needle sources (de-

scribed in Section 4.1.1) reduces with distance moving away from it.  

Since the tumors were raised masses in the skin, the values of electric 

fields were highest at the highest part of the tumor.  It was envisaged 

that, fields that the sides of the tumor were exposed to were lower as 

they were farther away from the source.  Therefore, corona ions of ei-

ther polarity probably affected delivery to more cells in the top most 

layer of the tumor due it proximity to the corona generating needles 

while the sides and cells in the deep tumor margin had fewer cells that 

had the bleomycin delivered. 

An important and unexpected observation from the tumor data 

was that for both the single and triple treatment, corona ion exposure 
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alone of either polarity resulted in increased growth rates over the no 

treatment controls.  These increased growth rates can be observed in 

Figures 4.25 and 4.26.  It appeared that these solid tumors grew 

faster compared to the no treatment controls, but only measurement 

on days three and seven of follow up were possible due to a tumor 

volume exclusion criteria of 1000 mm3.  Hence we cannot make a 

definite conclusion and more work would be needed that would either 

start treatment with smaller tumor volumes or that studies could be 

designed with a larger tumor exclusion size.  This would enable mak-

ing a definite conclusion about increase in growth rates of tumors fol-

lowing corona ion exposure of either polarity.   

5.4  Delivery of Plasmid DNA to Cells in Skin 

Skin of mice was chosen as the target tissue due to its easy ac-

cessibility for testing delivery of plasmid DNA.  The group that received 

a plasmid injection followed by exposure to 30 minutes of positive co-

rona ions showed an average of five fold increase in gene expression 

in the ten day post treatment follow up period that it was significantly 

higher than the group that received the plasmid injection alone.  The 

results of negative corona ion exposure were slightly different from the 

positive corona exposed groups, with only the group that received ex-

posure to corona ions for ten minutes after plasmid injection being 
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significantly higher than the plasmid only group.  No other groups that 

received the plasmid and negative corona ion exposure had signifi-

cantly higher gene expression than the group that received the plas-

mid alone.   

An interesting observation was that the group that received ex-

posure to 30 minutes of negative corona after plasmid injection was 

not significantly different from the plasmid only group.  The ten minute 

negative corona exposed group had an average of six to eight fold in-

crease in gene expression during the 25 day post treatment time.  As 

has been commonly observed in plasmid delivery using electropora-

tion, no involuntary muscle simulation or visual tissue damage or burn 

was observed.  An electrophoretic force is suggested to be involved in 

driving the DNA into the cells.  Since DNA has a net charge it would 

experience an electrophoretic driving force created by the accumula-

tion of charges deposited on the skin of mice.  This is analogous to a 

static field produced by charge buildup on the surface of the mice forc-

ing the charged DNA molecules in the interior of cells.  This net charge 

differential produced due to ion deposition could create an electric field 

and this could be the mechanism facilitating the cells in the skin to up-

take the injected plasmid DNA.  Subsequent gene expression achieved 

with this unoptimized system could provide an inexpensive and flexible 

option for gene delivery.   
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5.5  Interaction of Corona Ions with Biological Cells In Vitro 

Irrespective of the mechanism of interaction of deposited corona 

ions with the media, how this interaction led to the uptake of imper-

meant molecules inside the cell was also discussed in this work.  Tem-

perature and pH measurements made did not indicate a change in the 

microenvironment surrounding the cells and hence these two parame-

ters had either no effect or a minimal effect not strong enough to 

cause molecular delivery.  The interaction of corona ion exposure with 

the plasma membrane and proteins embedded in it was studied next.   

Effect of corona ion exposure on resting membrane potential and 

cell adhesion were used to propose a mechanism for in vitro delivery.  

Results from experiments indicated a change in the total resting mem-

brane potential of B16F10 and fibroblast cells after exposure to corona 

ions of either polarity.  This change of voltage was determined from 

increase in fluorescence of Di-8-ANEPPS, a voltage sensitive dye.  This 

increase in fluorescence due to the corona ion deposition is attributed 

to a change in the packing of the lipids of the plasma membrane.  Also 

exposure for about five to seven minutes with corona ions of either po-

larity led to partial or complete detachment of cells from their sub-

strate as compared to the controls indicating a possible effect on the 

transmembrane proteins.   
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The integrity of the lipid bilayer and the proteins embedded in it 

is maintained by hydrophobic interactions. These interactions are 

nothing but failure to form hydrogen bonds with water molecules that 

repel the lipid molecules and force them to aggregate together.  Ther-

modynamically since matter seeks to be in its lowest possible energy 

state, this particular aggregation of lipids is energetically favorable.  

Water molecules have a permanent dipole and play a very important 

role in maintaining the conformation of transmembrane proteins [106].  

In fact it is the set of dipoles inside the cell close to the bilayer and a 

set of dipoles close the outer membrane that together contribute to-

wards maintaining the structure of the bilayer.  The water dipoles 

around the bilayer on the outside of the membrane are arranged in an 

ordered structure [107] and each has two free hydrogen bonds avail-

able to bond and it uses these to bond with the amphiphilic lipids 

and/or transmembrane proteins to keep the structure of the bilayer in-

tact.  

It is commonly known that the application of an external electric 

field can change the orientation of the water dipoles [108].  The 

change in alignment of water dipoles forces all other dipoles in the vi-

cinity to respond by realignment [107, 109]. It is hypothesized that 

the field created due to the deposition of corona ions on the surface of 

the media covering the cells probably changes the orientation of the 
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water dipoles and this could be affecting the structure of the lipid bi-

layer and/or inserted transmembrane proteins.  Alternatively if the 

ions are diffusing into the liquid to affect the cells, consideration has to 

be given to the fact that they would first become solvated as they dif-

fuse and would drag along with it a set of oriented water dipoles.  Co-

rona ions are deposited on the surface of the media covering the cells 

for ten minutes and the solvation pressure created due to these diffus-

ing ions could be affecting the bilayer and/or membrane proteins (in-

cluding cadherins and integrins) which could result in the creation of 

temporary destabilized membrane regions or pathways that let ex-

tracellular molecules inside the cell.   

5.6  Resealing Time Constant for Corona Treated B16F10 Cells 

The time that a cell takes to recover from exposure to corona 

ions and return to its normal impermeable state can be very crucial in 

determining its viability.  To study this, rate of uptake of the dye SY-

TOX-green was monitored for 35 minutes after exposure to either 

positive or negative corona ions.  SYTOX-green is an intercalating dye 

that diffuses inside the cell and binds to nucleic acids inside the cell to 

give a strongly fluorescent complex.  Results from this experiment 

showed that the rate of uptake of SYTOX-green continued for about 25 

minutes after exposure to ions of either polarity.  Using the results of 
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this uptake data a preliminary model for the resealing time constant of 

B16F10 cells exposed to corona ions was developed.  Increase in fluo-

rescence was equated to the uptake of SYTOX-green.  It was assumed 

that the permeability of the dye SYTOX-green inside the porated cells 

after corona ion exposure reduced exponentially with time.  This de-

veloped model was verified with data from the literature.  Values for 

permeability were evaluated from the diffusion coefficient values of the 

dye SERVA blue inside electroporated cells.  The curves generated us-

ing permeability values and the model equation were a reasonably 

good fit to experimental data of SYTOX-green uptake.  Based on the 

data generated using these permeability values, it may be concluded 

that proper estimation of the permeability is very key to determining 

the resealing time constant and correct values used with the model 

developed would fit the experimental data.  Future efforts would hence 

be directed toward proper estimation of the permeability.  Estimation 

of the permeability would first require the estimation of the number 

binding sites on DNA/RNA and the equilibrium binding constant for 

B16F10 cells which are also recommended as a part of future studies. 

5.7  Future Directions 

A novel non-contact system for drug and gene delivery in vitro 

and in vivo was successfully developed.  Even though results with this 
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unoptimized method of delivery are very promising, estimating the 

magnitude of the electric field inside the liquid close to the cells would 

help in better understanding of the mechanism of delivery and should 

be amongst the first studies carried out for the future.   

Future work should also concentrate on determining and optimiz-

ing the parameters that were responsible for enhancing gene expres-

sion with the end goal of maximizing expression.  Electric field and im-

pedance measurements are recommended in animal models to further 

assist in characterizing the effects of corona ions on cells/tissues and 

in optimizing delivery.  Other factors including spacing between the 

generator and target tissue, higher corona ion currents or the effects 

of ground or counter charge presence may be appropriate in future ef-

forts to maximize the extent of molecular delivery.  Experiments 

should also be carried out to see if corona exposure alone could en-

hance cell proliferation as indicated by results of increase in tumor 

growth rates.  Corona ions have been used in the past for sterilization 

of heat sensitive materials and for killing allergens and dust mites 

hence it might have an important use in the future as a disinfectant or 

in sterilization of tumor beds.   

Studies can also be carried out to improve the efficiency of this 

method as compared to the other physical gene therapy methods or 

improving overall gene transfer efficiency by combining corona ion ex-
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posure with other methods like ultrasound, electroporation etc..  Fu-

ture work is also recommended to determine the specific kinds of 

transmembrane proteins that could have been affected by corona ions. 

The effect of corona ion deposition on activation of transcription fac-

tors should also be investigated.  Preliminary model developed here to 

determine the resealing time constant should be validated and made 

to fit the data obtained in Figure 4.35 and 4.36.  To estimate the per-

meability of SYTOX-green inside cells treated with corona ions first an 

estimation of the number of SYTOX-green binding sites is necessary.  

Following this the equilibrium constant for the binding of SYTOX-green 

to these binding sites should be estimated and then finally the perme-

ability and resealing time constant.   
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Appendix A: Evaluation of Integral in Equation (4.6) 

Equation (4.6) is given as dtTt
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Evaluating the above definite integral we get 
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Appendix A (continued) 

Taking exponential of both sides of the above equation we get 

   ^ »̀
¼

º
«
¬

ª
�� 

� 1)/exp(exp)( Tt
V
TS

C
CC

o

oo

o

io P
 

   ^ »̀
¼

º
«
¬

ª
�� � 1)/exp(exp1 Tt

V
TS

C
C

o

oo

o

i P
 

Hence  ^ »̀
¼

º
«
¬

ª
��� 1)/exp(exp1 Tt

V
TS

C
C

o

oo

o

i P
 and rearrangement 

gives 

   ^ ` ¸̧
¹

·
¨̈
©

§
»
¼

º
«
¬

ª
��� 1)/exp(exp1 Tt

V
TSCC

o

oo
oi

P
 

 

 



 

162 

Appendix B: Values of Constants Used for Generating Model Curves for 
Figures 4.37-4.39 

oV  Volume of a cell 3

3
4 rS  

oS  Surface area of a cell 24 rS  2m  

o

o

V
S

 Ratio of surface area to volume, 
r
3

 

r  Radius of a biological cell, assumed to be 10 µm  

T Resealing time constant, assumed to be 28 minutes based on 
shape of the curve obtained from rate of uptake of SYTOX-green 

 data 

0P  Permeability of SYTOX-green at time zero after corona ion expo 

 sure, 
sec
mP

.  Range of values assumed were 0.05 to 50 

EK  Equilibrium constant for SYTOX-green binding to nucleic acids in- 
 side the cell, 10-11 

oN  Total number of binding sites, 1015  
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